Project X Beam Diagnostic Instrumentation

Vic Scarpine

Project X Machine Advisory Committee March 18-19, 2013

The scope of beam diagnostics are to identify and provide the instrumentation systems necessary to successful commission, characterize and operate all Project X sub-accelerators

 This presentation will only discuss beam diagnostic instrumentation required from the front-end through 8 GeV pulsed linac

Accelerator instrumentation sections:

- Ion source & LEBT
- MEBT
- 0-1 GeV CW linac
- 1-3 Gev CW linac
- 3-8 GeV pulsed linac
- Transport lines
- Rings not in this talk

Measurement Goals

- Beam current
 - DCCTs, Toroids, High-Bandwidth Resistive Wall Current Monitors (RWCM)
- Beam position and phase
 - Warm and cold BPMs
- Beam energy and energy spread
 - Time-of-flight from BPM phase, spectrometer magnet
- Beam transverse profiles
 - Wire scanners, multi-wires, laser wires

- Beam transverse emittance
 - Allison scanner, slit-wire scanners, laser emittance monitor
- Beam longitudinal profiles
 - Wire-based bunch shape monitor, picosecond laser wires
- Beam halo
 - Vibrating wire, high-gain wires, laser wire, apertures, diamond detectors
- Beam loss monitoring
 - Ion chambers, neutron detectors
- Chopped beam extinction efficiency
 - High-Bandwidth RWCM, single (few) particle detection

List of ~ 15 unique instruments needed for Project X Most to be developed and tested for PXIE

Source-LEBT Instrumentation

Beam Current

- Unchopped Beam Current
 - DCCT
- Chopped Beam Current
 - Toroid pickup

Beam Emittance

- Water-cooled Allison Scanner
 - Measurement at ion source
 - Collaboration with SNS

MEBT Operational Beam Measurements: (red = CW)

- Transverse position BPMs
- Bunch Phase BPMs → time-of-flight → beam energy
- Beam Current RWCM (resistive wall current monitor)
- Extinction RWCM with fast scope
- Transverse shape wire scanners, laser wires
- Transverse emittance slit/multiwire (low-res), double slit/Faraday cup (hi-res), Quad scans
- Longitudinal shape laser wires, chopper, bunch shape monitor
- Absorber Profiler OTR Imager or IR imager

MEBT Chopper Extinction Measurement

Use upstream and downstream Resistive Wall Current Monitors (RWCM)

- Extinction -> 'SBD-like' monitor
 - Average over many bunches
 - <1 Hz BW

5000

- Fits to bunch shape
- Measure impact on adjacent bunches

Combined Wire Scanner -Laser Wire Unit

Transverse 3-wire wire scanner plus laser wire module

- Hybrid wire scanner with laser ports
 - Modified version of SNS design
- Wire scanner in pulsed beam operation only
- Laser wire in either pulsed or CW beam operation
- Laser wire intended to measure transverse and longitudinal profiles
 - Will different lasers be required for transverse versus longitudinal measurements?
- Can wires or lasers measure profile tails/halo?
 - Transverse halo measurements with wire suffer from cross-talk
 - Halo measurement with laser suffer from scattered light effects

Locations: MEBT, between SC cryomodules, transport lines

Project X Low-Power Transverse and Longitudinal Laser Wire

Mode-locked psec laser used to measure both transverse and longitudinal profiles

- Laser rep-rate is locked to accelerator RF
- Distribute modulated laser pulses via fibers
 - Narrow-band lock-in amp detects modulated signal
- Measure profiles by either:
 - Collection of electrons
 - Use BPM as notched-beam pickup would allow laser monitor to fit between cryomodules

Questions:

- What is the photodissociation efficiency?
- What are the noise issues?
- What are the nonlinear limits to power in the fiber?
- What signal-to-noise ratios and averaging times are practical?

Fall back laser wire option is to use high-power laser technique similar to SNS

Laser Wire Emittance Monitor

Laser Wire Emittance Monitor

- Laser acts like slit \rightarrow x
 - Generates H0
- H0 profiler measure H0 divergence \rightarrow x'
 - Background from beam neutralization
- Demonstrated at SNS

Operate at the end of 1 GeV, 3 GeV and 8 GeV linacs

Preliminary SNS Measurements (Y. Liu)

Horizontal

Project X Vibrating Wire Halo Monitor

Preliminary Estimates of Instrument by Location

	Current	Position/ Phase - BPM	Trans. Profiles	Trans. Emittance	Long. Profiles	Halo	Beam Loss+	Extinction
LEBT	2			1				
MEBT	2	9	4	1	1	2	TBD	1
1 GeV Linac	2	1 per FE	1 per CM *	—	1 per CM *	4	2/1 per CM	—
3 GeV Linac	2	1 per FE	4	—	4	2	2/1 per CM	—
8 GeV Linac	4	1 per FE	4	—	4	2	2/1 per CM	
1 GeV Trans Arc	2	1 per FE	4 to 6	1 *	1		1/1 per FE*	
3 GeV Trans Arc	2	1 per FE	4 to 6	1 *	1		1/1 per FE*	
FE = focusing element * = laserwire CM = cryomodule + = charged/neutral								

- Many Project X beam diagnostic instruments are based on previous designs
 - Most are low technical risk
 - Medium risk items
 - MEBT extinction measurement
 - Wire scanner laser wire combination unit
 - Higher risk items
 - Low-power laser wire
 - Laser transverse emittance monitor
 - Vibrating wire halo measurements and transverse and longitudinal tails/halos in general
- Largest risks involve either laser-based measurements or halo measurements

Advancing R&D at PXIE in these areas will mitigate risk for Project X