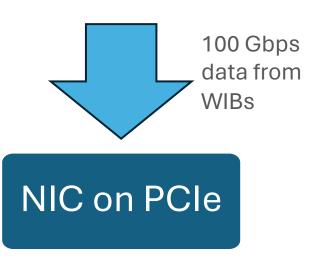
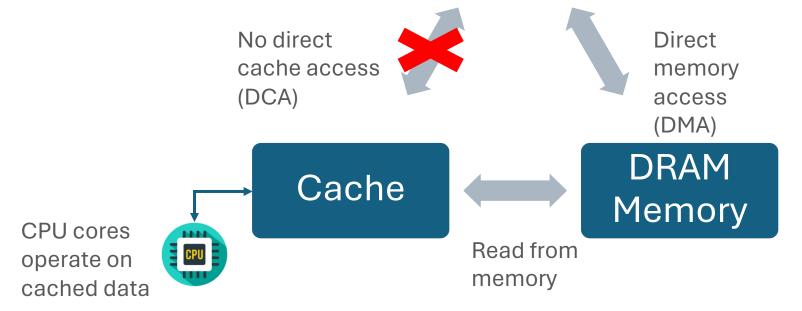


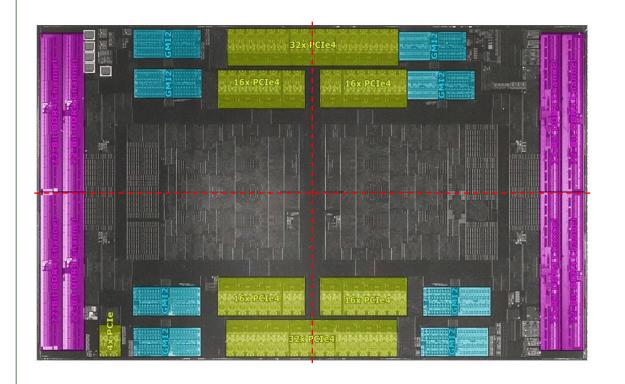
Danaisis Vargas, Matthew Man, and William Dallaway

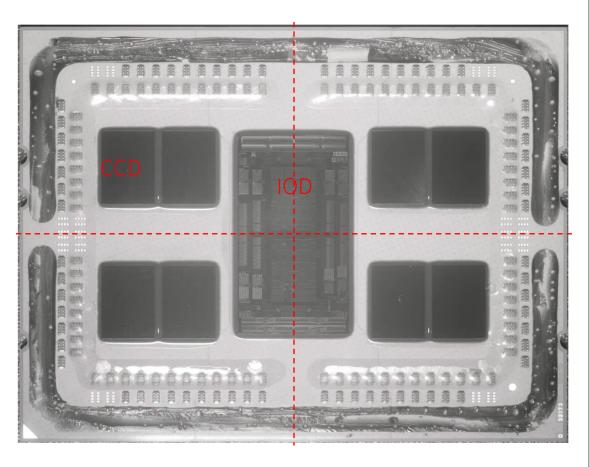
DUNE DAQ Core Software WG June 5th, 2024




Today in the talk

- AMD Zen3 Tuning: eliminating missed packets.
- np04-srv-005 storage server commissioning.
- Readout performance test summary.


AMD Zen3 Tuning: eliminating missed packets


Flow of data

AMD Zen3 architecture

Single socket: connections

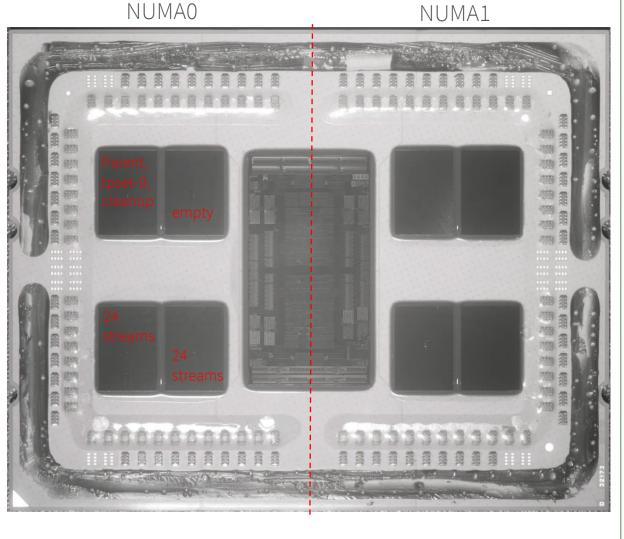
Note: pictured is Zen2 architecture but at this level they're equivalent

Single socket: dies

BIOS tuning

- np02-srv-001 and np02-srv-004 are same CPU family (Milan)
 - 001 has 4 cores x 4 CCDs per socket
 - 004 has 8 cores x 8 CCDs per socket
- On 001 the only BIOS setting necessary was to set the LCKL frequency to maximum of 593 MHz
 - Improves DMA from PCIe
- 004 needed more tuning, see table

 - Targeted at reducing memory latency
 I included everything I changed, and highlighted the ones I think made the difference


np02-srv-004 BIOS settings

Setting	value	notes
LCKL frequency	593 MHz	
IOMMU	enable*	in kernel set <u>iommu</u> =pt and amd_iommu=on
relaxed ordering	disable	(on or off, similar performance)
determinism control	manual	
determinism slider	power	greater performance on CPUs
APBDIS	1	Enable fixed Infinity Fabric P-state control.
fixed SOC <u>Pstate</u>	P0	Highest-performing Infinity Fabric P-state. (try P1 if necessary)
DF C-states	disabled	turn off sleep states of infinity fabric
xGMI Link Width Control	manual	(dynamic link width management DLWM) manual control of inter- socket link width
xGMI Max Link Width Control	manual	for symmetric topology, we don't need inter-socket bandwidth, so set to min. 8 links instead of up to 16
xGMI Force Link Width Enable	force	
xGMI Force Link Width	1	1: 8 links 2: 16 links
xGMI Max Link Width	Auto	
ACPI SRAT L3 cache as NUMA domain	disabled	
NUMA nodes per socket	NPS2*	When changing NPS, make sure to add hugepages to /opt/setup- 100g-vfio.sh script for each node

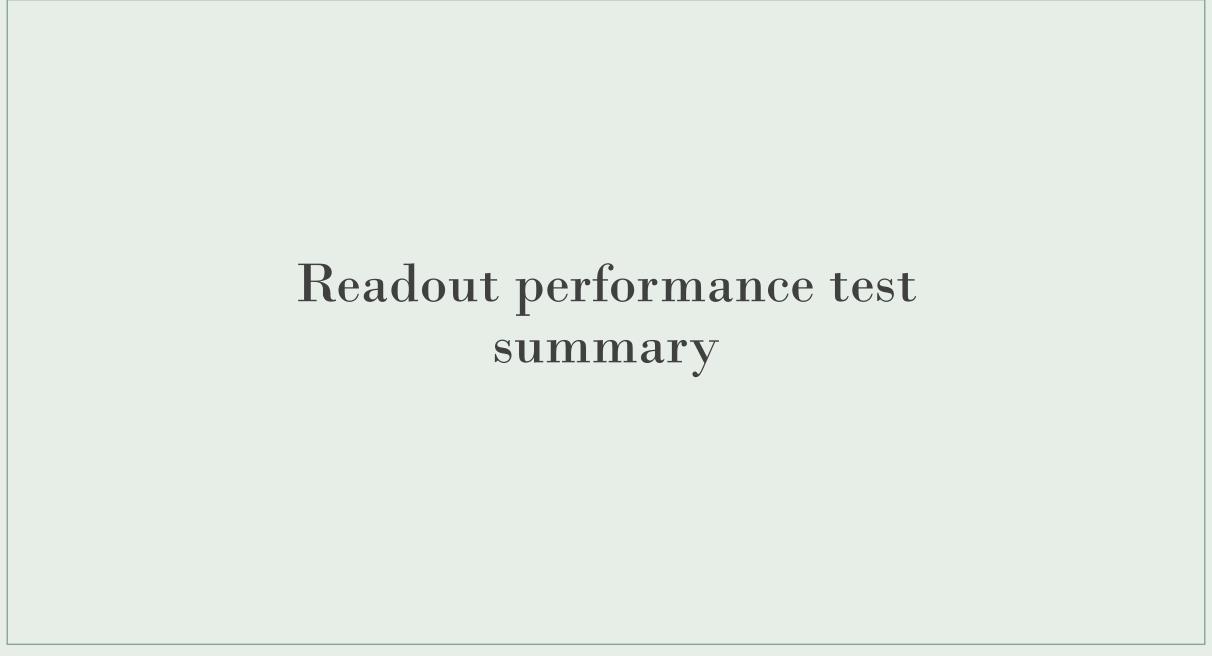
CPU pinning

Group by stream (48 WIB streams): rte-worker, post-proc, and recording handling the same streams grouped on same CCD

```
'--name runp02srv004eth0": {
 "parent": "1,2,3,4,129,130,131,132",
 "threads":
   "rte-worker-16": "16".
  "rte-worker-20": "20",
  "rte-worker-24": "24",
   "rte-worker-28": "28",
  "tpset-0": "0,128",
  "cleanup-0": "0,128",
  "postproc-0-(100|101|102|103|116|117|118|119|132|133|134|135)": "17,18,145,146",
   "postproc-0-(104|105|106|107|120|121|122|123|136|137|138|139)": "21,22,149,150",
   "postproc-0-(108|109|110|111|124|125|126|127|140|141|142|143)": "25,26,153,154",
   "postproc-0-(112|113|114|115|128|129|130|131|144|145|146|147)": "29,30,157,158",
  "recording-(100|101|102|103|116|117|118|119|132|133|134|135)": "19,147",
  "recording-(104|105|106|107|120|121|122|123|136|137|138|139)": "23,151",
  "recording-(108|109|110|111|124|125|126|127|140|141|142|143)": "27,155",
  "recording-(112|113|114|115|128|129|130|131|144|145|146|147)": "31,159"
```


What else is there to do?

- AMD Zen3 Tuning: eliminating missed packets.
 - Successful understanding and control of AMD architecture.
 - For PRR we should not be limited by Intel vs AMD CPU architectures.
 - I believe Intel machine 031 and AMD machine 004 are both capable of reading out 4 CRPs.
 - Technical point: DPDK needs to be rebuilt to allow rte-workers to use CPUs >128.
 - Power consumption/bare-minimum resources.
 - Are there BIOS settings that are unnecessary and can save power?
 (DF C-states, fixed P states)


Status

- All nvme drives prepared
 - 4 RAID level 10 arrays
 - /data2, /data3, /data4, /data5
 - Added into fstab to persist on reboot
- Kurt mentioned file-transfer metadata-creation script relies on /data0-3 pattern.
 - Do the RAID data directories need to be renamed?
 - How are /data0-1 used and how are /data2-5 used?

Testing

- Tested data writing with NP02 and NP04
- With four data writers we were able to sustain
 ~7Hz trigger rate from CRP4+5
 - the bottleneck is the network
- We used twelve datawriters for NP04
 - bottlenecks were from the trigger

What else is there to do?

Tests

- Stream scaling performance tests (with scaling for 8, 16, 24, 32, 40, and 48 streams).
 - with TPG enable
 - with raw recording enable
 - with TPG and raw recording enable
 - before and after applying kernel params

- Stream scaling performance tests (with scaling for 8, 16, 24, 32, 40, and 48 streams).
 - with TPG and raw recording enable
- Reading one APA / CRP per server (using only one NUMA node) when possible.
 - using differents TPG methods: AbsRS, SilverBullet, and SimpleThreshold
 - before and after applying kernel params
- Reading two APAs / CRPs per server when possible.
 - 2 x 100 Gb NICs
- Reading four APAs / CRPs.
 - 2 x 200 Gb NICs

Readout performance test summary

Test	np02-srv-001	np02-srv-002	np02-srv-003	np02-srv-004	np04-srv-031	np04-srv-021	np04-srv-022	np04-srv-028	np04-srv-029
				Emulation					
Stream scaling w TPG	Χ	Χ	X	Χ					
Stream scaling w raw recording			X	X					
Stream scaling w TPG and recording			X	X					
Stream scaling before and after applying kernel params				X					
				Data					
Stream scaling w TPG and recording			X						
TPG methods						X	X	X	Χ
Reading one APAs / CRPs	X	X	X	X	X	X	X	X	X
Reading two APA / CRP	possible	possible	X	X	Χ				
Reading four APA / CRP				possible	possible				

What else is there to do?

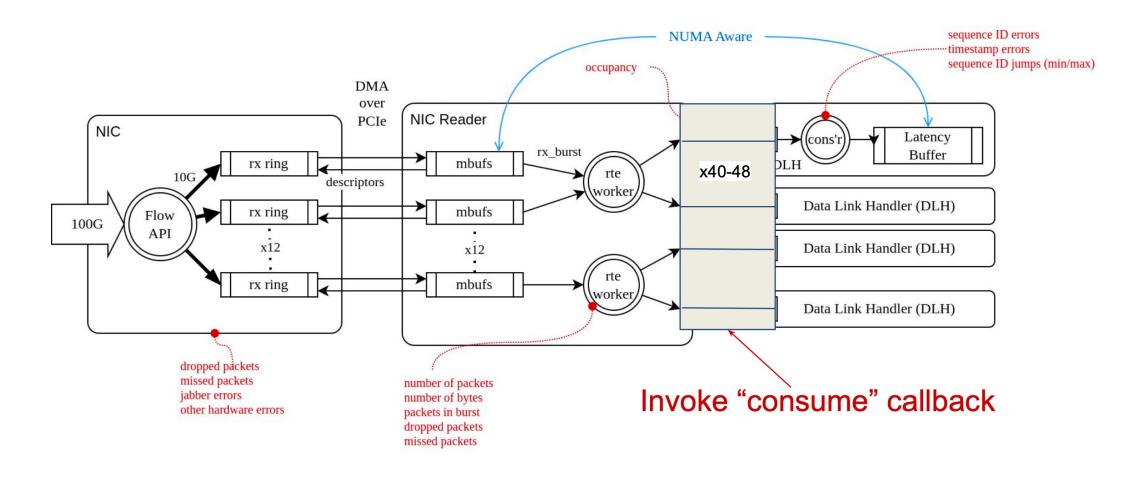
- Readout performance test summary.
 - The performancetest app (https://github.com/DUNE-DAQ/performancetest) is up to date.
 - How to conduct benchmark and performance tests.
 - How to process and present the results.
 - All configuration are on np04 (https://gitlab.cern.ch/dune-daq/online/np04daq-configs.git)
 - Reading two APAs / CRPs. We would like to test:
 - np02-srv-001 (AMD) with 2 x 100 Gb NICs
 - np02-srv-002 (Intel) with 2 x 100 Gb NICs
 - Reading four APAs / CRPs. This will be possible with servers:
 - np04-srv-031 (Intel) with 2 x 200 Gb NICs
 - np02-srv-004 (AMD) with 4 x 100 Gb or 2 x 200 Gb NICs
 - Minimum resources test

References

AMD tuning guides:

https://www.amd.com/content/dam/amd/en/do cuments/epyc-technical-docs/tuningguides/data-plane-development-kit-tuningguide-amd-epyc7003-series-processors.pdf

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/tuning-guides/amd-epyc-7003-tg-workload-57011.pdf


AMD topology:

https://www.anandtech.com/show/16529/amd-epyc-milan-review/4

Thank you

Callbacks

