Locating the Higgs Peak at the Muon Collider

Alexander Conway aconway@fnal.gov

"Needle in a Haystack"

- Estimated future minimum uncertainty on Higgs mass from the LHC is on the order of 100MeV.
 - Muon collider beam energy resolution likely in the 2-5MeV range.
 - SM Higgs peak is only ~4MeV wide.
 Finding a needle with a needle!
- Need a 'search' strategy that will minimize the luminosity required to find the Higgs peak.
 - Estimate effects of parameters such as beam width.

Basic Strategy

- Use a priori information from LHC measurements to guide search.
 126.0GeV mean, 100MeV width.
- Divide search space into bins of width equal to beam gaussian width (+/- 1σ)
- Take data in bins ordered by the probability of finding Higgs.
 - Probability calculated from
 - LHC peak
 - Chance of seeing at least N events if beam is centered on peak.

Probability of Observation Requirement

- Choose the number of events N we want to guarantee observing if the beam is centered on the peak.
- Use Poissonian statistics. To *guarantee* observing ¹⁰ at least N=2 events at a 3σ confidence level × (99.73%), *expected* value of X, number of observed events, must be 8.13

Effects of Beam Width

- Cross sections given beam is centered on Higgs 4.2MeV wide Higgs peak and no background
- Wider beams reduce effective Higgs cross section but can search a wider space.
- Minimal physics background in WW* channel

Effects of Beam Width

• Higher cross section in b-bbar channel, but also larger physics background (not yet included in calculations).

Search Method

- For each bin, calculate amount of luminosity required to achieve each confidence level.
- Rank bins at each interval in confidence level by *a priori* probability given by the LHC multiplied by the change in confidence level.
- Search bins in order according to this ranking.
 - Fanning out pattern:
 - Starts at center of LHC peak and fans out to either side
 - Returns to center when ranking is higher there than on the tails.
 - Sum the luminosity taken at each point.

Total Required Luminosity

Total Required Luminosity

Thoughts

- Physics backgrounds are not (yet!) taken into account.
 - WW* background is very low.
 - Tracking important for measurement via lepton + missing E_T
 - Calorimetry important for 4-jet reconstruction
 - What is reasonable fake rate?
 - b-bbar physics background is higher than signal.
 - b-tagging study to estimate fake rate, purity, efficiency
 - Try reconstructing jets to separate Z's from h's
- Still ignoring machine backgrounds.

Thoughts

- Search method is still naive.
 - Eventually do a simulated search where probabilities are periodically recalculated based on observed events.
 - *ie.* zero in on observed peaks
- Search method depends on easy adjustment of beam energy.
- Will want ability to change beam width for searching vs measuring.
- Total required luminosity currently minimized at around 30MeV beam width.
 - Should change with backgrounds.

Looking Forward

• b-bbar

- flavor tagging with LCFIPlus
- Event topology to remove Z/gamma -> b-bbar background, eg:
 - Thrust, Oblateness, Number of jets, 2-jet invariant mass, b-momentum
 - Straight from Pythia data
- Potential huge reduction in physics background
- WW* channel
 - Fake rate
 - Jet reconstruction
- More realistic calculations of physics measurement potential.