TPG Commissioning for ProtoDUNE-HD in May 2024 at NP04

Ivana Hristova, Artur Sztuc, Michal Rigan, Alex Oranday

On behalf of the DUNE TPG/Trigger Group

03 June 2024

TPG Commissioning Goals

- Choose baseline TPG configuration for stable running with cosmics and beam
 - Available TPG algorithms
 - 1. SimpleThreshold (ST)) no modification of the raw ADC waveform
 - 2. Standard Running Sum (StandardRS, SRS) running sum performed on the raw ADC values
 - 3. Absolute Running Sum (AbsRS, ARS) running sum performed on the absolute value of the raw ADC values
 - TPG algorithm configurable parameters
 - Memory factor (R)
 - Scale factor (s) used only for AbsRS
- Look at TPG algorithm configuration
- TP rates
- TPG algorithm comparison in progress

TPG Algorithm Configuration

- Algorithm configuration parameters are set from daqconf through the DAQ readout module to the final algorithm
- Knowledge of algorithm implementation allows us to create a comprehensive set of parameters
 - Taking into account of parameter type and resolution (due to AVX2 arithmetics used in TPG)
 - o Suggest to prepare list of useful parameters based on emulation and compare to real data

AbsoluteRS vs StandardRS AVX2 Implementation

Absolute Running Sum Algorithm

Standard Running Sum Algorithm

*RS_adcs used for hit finding, raw_adcs used for TP parameter calculation

Both algorithms implement second pedestal subtraction on *RS_adcs

TPG Running Sum (RS) Algorithm Configuration

Absolute Running Sum Algorithm

Standard Running Sum Algorithm

readoutlibs/schema/readoutlibs/readoutconfig.jsonnet

TPG RS Config Propagation - Module Level

Configuration per plane

fdreadoutlibs/src/wibeth/WIBEthFrameProcessor.cpp

```
X = 0, 1, 2 (induction, induction, collection)
```

1.
$$R = 0.8, 5 = 2$$

2. $R = 0.8 \times 10 = 8$
2. $R = 10/2 = 5$

```
m_tpg_rs_memory_factor_planeX = config.tpg_rs_memory_factor_planeX != -1 ?

10*config.tpg_rs_memory_factor_planeX : 10*config.tpg_rs_memory_factor_default;

m_tpg_rs_scale_factor_planeX = config.tpg_rs_scale_factor_planeX ?

10/config.tpg_rs_scale_factor_planeX : 10/config.tpg_rs_scale_factor_default;
```


TPG RS Config Propagation - Algorithm Level

ProcessAbsRSAVX2.hpp

ProcessStandardRSAVX2.hpp

fdreadoutlibs/include/fdreadoutlibs/wibeth/tpg/

$$RS = RS * R / 10 + abs(adc) * s / 10$$

$$RS = RS * R / 10 + adc$$

- 1. A = RS * R
- 2. B = abs(adc) * s
- 3. RS = (A + B) / 10

INT16 arithmetics R, s: limited precision

2. RS = A + adc

#960 Impossible to configure controls (wired Xbox360)

1.
$$R = 0.8 \times 10 = 8$$

2. $R = 8/10 = 0.8$
3.

QJ 9 comments

supertuxkart/stk-code

TPG Rates

- Unexpected high TP rates of 800 kHz per plane
- Here ADC thresholds are NOT calibrated to energy
 - o ADC to MeV calibration needed at some point, e.g. using Bismuth radiation source
- Next plots
 - Running Sum configurations: R = 0.8, s = 1

TPG Rates - SimpleThreshold

- SimpleThreshold Simulation
- SimpleThreshold AVX2
- SimpleThreshold NAIVE
- 800 kHz
- Total, per APA, per plane
- Validation of TPG algorithm implementation
 - AVX2 = running online
 - NAIVE offline emulation
 - Simulation
- Perfect agreement any discrepancy due to RS algorithms

TPG Rates - StandardRS

- StandardRS Simulation
- StandardRS AVX2
- StandardRS NAIVE
- 800 kHz
- Good agreement between AVX2, NAIVE and Simulation for induction planes
- Discrepancy for collection plane between AVX2 and NAIVE/Simulation
 - not understood now

TPG Rates - AbsRS

- AbsRS Simulation
- AbsRS AVX2
- AbsRS NAIVE
- -- 800 kHz
 - Good agreement between AVS2,
 NAIVE and Simulation for induction planes
 - Discrepancy for collection between AVX2 and NAIVE/Simulation - not understood now
 - Both StandardRS and AbsRS

TPG Rates - Simulation

- Simulation SimpleThreshold
- Simulation StandardRS
- Simulation AbsRS
- -- 800 kHz
 - Good agreement between StandardRS and AbsRS
 - There is no evidence that StandardRS and AbsRS would behave significantly different on induction planes

TPG Rates - AVX2

- AVX2 SimpleThreshold
- AVX2 StandardRS
- AVX2 AbsRS
- -- 800 kHz
- Discrepancy for collection plane between StandardRS and AbsRS
 - To be investigated

TPG Rates - NAIVE (AVX2 EMU)

- NAIVE SimpleThreshold
- NAIVE StandardRS
- NAIVE AbsRS
- 800 kHz
- Better agreement with Simulation than with AVX2
- Some feature of AVX2 algorithm implementation not understood/correctly emulated

TPG Algorithm Comparison

TPG Comparison - Raw ADC Mean and RMS

- Compared to
 SimpleThreahold, any RS
 amplifies ADC signal
 - RS mean too narrow to be checked (2-nd pedestal subtraction)
- No major difference between StandardRS and AbsRS
 - AbsRS appears to have narrower RMS
 - Per plane to check

TPG Comparison - TP Peak ADC Mean and RMS

- No major difference between StandardRS and AbsRS
 - Per plane to check

TPG RS Algorithms Parameters Scan - R

- R = 0.7
- \bullet R = 0.8
- R = 0.9
 - RS parameters (R, s) give additional handle on the TP rates
 - In addition to the algorithm choice and ADC threshold
 - Systematic study ongoing
 - E.g. for fixed threshold (300 ADCs)
 StandardRS has somewhat stronger dependence on R than AbsRS

RS Algorithm on Induction Planes (Bipolar Signals)

TPG RS Comparison - Waveforms and TPs

- Features of the TPG algorithms
 - Hit finding works correctly across WIB frames TP parameters match ADC waveform
 - Latest change to TPG RS algorithms extracts TP parameters from RS waveforms
 - RS behaviour seems to be very stable and robust
 - Hit parameter extraction is predictable and under control in most cases
 - RS waferom transformation causes double (multiple) TPs to be created investigation

TPG RS Comparison - StandardRS vs AbsRS Case

- Special case of asymmetric bipolar pulses on induction wires
 - StandardRS amplifies the negative peak (in the lack of or very small positive peak)
 - Only AbsRS capable of recovering such signals (in case that's desired)

Summary & Conclusion

- TPG commissioning overall successful
- High rate of TPs being found/made along muon tracks and blips from Ar39 and other sources
 - TPG RS algorithms now use the RS (not raw) waveform to compute TP parameters
- Stable baseline configuration found SimpleThreshold on collection plane, StandardRS on induction planes, with optimal ADC thresholds per plane
- Ongoing systematic checks to better understand behaviour of RS algorithms
 - Improve TPG algorithm emulation/simulation in C++ to match AVX2 arithmetics and the other way around if possible

0

- Investigation whether the current baseline TPG configuration can be improved, e.g.
 - Run AbsRS on induction planes