BT error modes



Recap

* Last week:
* Running on MC true particle data.
* Graph was struggling to identify piOs based on edge
pairings.

* Todo:

* Fix edge pairings (plan was to separate shower and track
like objects)

* Run on reconstructed PFO, using back-tracked data
(“BT” type graph)



Improving piO identification

* Laid groundwork for creating different nodes types
for shower and track like PFOs.

e During testing discovered existing issues:

e Standard ML practice — normalise inputs to mean: 0O,
standard deviation: 1

Normalisation was being applied to labels (values 0/1).

Shared mother gave little information — beam particle
was a valid shared mother.

Potential issues with normalisation calculation.
Closest approach could go negative.



Improving piO identification

 After fixing the above issues, perfect pi0

identification could be recovered for the MC graphs
. Sk|pped over finishing the track/shower node splitting
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Understanding errors

* Final model train on MC had 1 misclassified event

e Can we use the Key: (counts, fraction(%))
extra losses to
understand this?
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Understanding errors

* Looking at the piO counts predicted by the network:
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Moving to BT data

* Ran using the same model as MC, using the
classification weightings of the last run BT model,
and slightly higher importance on particle count
predictions:

* Abs.: 0.275

* CEx.: 0.5

* 1 pi: 0.2625

e Multi. pi: 0.1875

Key: (counts, fraction(%))
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Moving to BT data

* For Abs.: 58.50% efficiency, 74.14% purity (product:
43.37%).

* For CEx.: 48.59% efficiency, 40.59% purity (product:
19.72%).

* For 1 pi: 79.18% efficiency,
65.80% purity
(product: 52.10%).

* For Multi.: 82.54% eff.,
88.79% purity
(product: 73.29%).

Key: (counts, fraction(%))
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Exploring BT results

 Same model as above, but changed the relative
weighting importances:
e Abs.: 0.275->0.27 os val_dense 60 fl1 _score class

* CEx.: 0.5->0.7 05 N

° 1 pl 02625 -> 027 0.7 M

* Multi. pi: 0.1875 ->0.13 °°
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Exploring BT results

* For Abs.: 59.18% efficiency, 69.60% purity (product:
41.19%).

* For CEx.: 77.46% efficiency, 30.56% purity (product:
23.67%).

* For 1 pi: 89.51% efficiency,
58.46% purity
(product: 52.32%).

* For Multi.: 66.41% efficiency,
95.24% purity
(product: 63.25%).

Key: (counts, fraction(%))
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true process

Exploring BT results

Left
CEx. : Multi. =0.7:0.13

Key: (counts, fraction(%))
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Right
CEx. : Multi. =0.5:0.1875

Key: (counts, fraction(%))
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true process

Exploring BT results

Left
CEx. : Multi. =0.7:0.13

Key: (counts, fraction(%))
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Right
CEx. : Multi. =0.5:0.1875

Key: (counts, fraction(%))
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Understanding BT results

* Network isn’t doing a very good job of predicting

the counts...

* But this is the number of particles in MC, what
about particles which have energy deposition?
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Understanding BT results

* When we compare with the number of particles
reco particles which back-track to a pion or photon
from pi0, it looks much better.

 (Different model — retrained)
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Understanding BT results

* Does this explain why the network does so poorly?

* Let’s consider the multiple pion events misclassified
as Charge EXChange: Key: (counts, fraction(%))
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Understanding BT results

Key: (counts, fraction(%))

* Pions in that region (recall predicted pion count is

very accurate)

 There aren’t
any
reconstructed
pions in this
region!

Predicted count

Pion count in multi. pion prod. classified as CEX.
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Predicted count

Key: (counts, fraction(%))
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Understanding BT results

* Big disparity between reconstructed an MC particle
counts.

* Create a new classification based on the
reconstructed counts

* Easier way to tell the disparity

* Retry the comparison of different class weightings,
with the ability to compare the reconstructed
classification matrix



true process

Understanding BT results

True classification

Left
CEx. : Multi. =0.7:0.13

Key: (counts, fraction(%))
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Right
CEx. : Multi. =0.5:0.1875

Key: (counts, fraction(%))

true process

I RS W
\\-\ 0,1 \13 \\"’9

reco region

= ) o -
sy [=)] o] o
counts (column normalised)

o
[N]

e
(=]



Understanding BT results

Reconstructed classification

Left Right
CEx. : Multi. = 0.7:0.13 CEx. : Multi. = 0.5:0.1875

Key: (counts, fraction(%)) Key: (counts, fraction(%))
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Next steps

 Remove BT data from edges (done)

* Lose a lot of pion counting capacity — need to improve ability
to deduce relationships

* PiO identification includes many more extra piOs predicted
with 0 piOs present — use momentum to reduce this?

* Remove BT data from particle identification
e Extra loss to indication particle ID success
* Try with true edges first, to see the effect of bad at this stage.
* Pure reconstructed data

e Other ideas:

* Add an additional loss where the network tries to predict
events where reco. and MC don’t align.

* What data indicates this? Use the momenta for this task
only? MC independence (randomly add/remove PFOs)?



Removing edge data

» Uses only reconstructed geometric properties on
edges: impact parameter, separation, closest

approach (non-beam edges only).

e Uses CEx. : multi. = 0.7:0.13 weighting

* For Abs.: 49.66% efficiency,
84.88% purity (prod.: 42.15%).

e For CEx.: 59.15% efficiency,
23.46% purity (prod.: 13.88%).

* For 1 pi: 52.62% efficiency,
45.92% purity (prod.: 24.17%).

* For Multi.: 69.85% efficiency,
81.41% purity (prod.: 56.86%).

true process
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Removing edge data

e Reconstructed classification:

* For Abs.: 44.83% efficiency,
66.32% purity
(product: 29.73%).

* For CEx.: 61.40% efficiency,
57.95% purity
(product: 35.58%).

* For 1 pi: 52.67% efficiency,
57.91% purity
(product: 30.50%).

* For Multi.: 83.86% efficiency,
68.24% purity
(product: 57.23%).

true process

Don’t mix up CEx. and

1 pion type events
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true process

Removing edge data

 Main classifier vs. reconstructed classification:

Key: (counts, fraction(%))
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Removing edge data

* PiO ID distribution
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Removing edge data
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Removing edge data
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