2x2 Demonstrator Physics with NuMI

Brooke Russell

2x2 Analysis Selection & Systematics Meeting July 3, 2024

Context

- The paraphrased request: illustrate 2x2 Demonstrator physics capabilities with N POT NuMI exposure to motivate continued operation, possibly up to FNAL beam (upgrade) shutdown
 - \circ Beam delivery scenarios:
 - 0 POT
 - 4.7E20 POT (minimum request)
 - 7.1E20 POT
 - 11.8E20 POT
- Here, physics case for extended 2x2 operation in NuMI
 - \odot Largely drawn from studies performed by others:
 - Callum Wilkinson: <u>2x2 cross sections</u>
 - Stephen Greenberg: <u>charged-currrent muon neutrino on Ar interactions</u>
 - Elise Hinkle: mesonless charged-current muon neutrino differential cross section measurements
 - Yifan Chen: <u>charged-current electron neutrino on Ar interactions</u>
 - Andrew Cudd: <u>Kaon production</u>
 - Zach Hulcher: Kaon and lambda production

"Accelerator Complex Status & Plans", A. Valishev & M. Clay (January 2024 FNAL PAC)

NuMI Operation

NuMI scheduled to cease beam delivery sometime in FY27

 Operation up to beam shutdown is assumed to be 11.8E20 POT

		FY	20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	
LBNF	Sanford			DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	
PIP-II	Fermilab			LBNF	LBNF	LBNF	LBNF	LBNF	LBNF	LBNF	LBNF	LB NF	LBNF	
NIUMI	MI			open	2x2	2x2	2x 2	2x2	2x2					
INUIVII	MI	NO		NOvA	NOvA	NOvA	NOvA	NOvA	NOvA					_ν
	В	μB		open	open	open	open	open	open			open	open	
BNB	В	IC		ICARUS	ICARUS	ICARUS	ICARUS	ICARUS	ICARUS	S		open	open	
	В	SB		SBND	SBND	SBND	SB ND	SBND	SBND			open	open	
Muon	Complex	g-2		g-2	g-2	g-2	·							
wuon	Complex	Mu		Mu2e	Mu2e	Mu2e	Mu2e	Mu2e	Mu2e			Mu2e	Mu2e	μ
	MT	ТВ		FTBF	FTBF	FTBF	FTBF	FTBF				FTBF	FTBF	
SY 120	MC	ТВ		FTBF	FTBF	FTBF	FTBF	FTBF				FTBF	FTBF	
	NM4	Sp		SpinQ	SpinQ	SpinQ	Spi <mark>nQ</mark>	SpinQ				open	open	p
LINAC	MTA			ITA	ITA	ITA	ITA	ITA	ITA					

"New NOvA Results with 10 Years of Data", J. Wolcott (Neutrino 2024)

NOvA dictates NuMI operation mode, likely RHC until beam shutdown

 Highly variable annual exposure

2x2 Demonstrator through the lens of DUNE LBL OA

- ND FDR ~ 2025
 - Does the detector design meet technical specifications?
 - Reconstruct neutrino interactions
 - Match interactions between detectors
 - Cope in a high rate environment

==> Technical performance evaluation requiring ~30 days NuMI operations

• DUNE Phase 2 CDR ~ 2026

- What ND-LAr detector design limitations will MCND need to address?
 - Final state kinematic phase space
 - Proton thresholds?
 - Specific particle topologies
 - Back-to-back charged pions

==> Physics performance evaluation requiring *X POT NuMI exposure*: driven by extended operation (potentially with readout upgrades – on par with final design technology) **to understand true technology limitations** Fundamentally, these questions <u>cannot be resolved with SBN program</u>

- DUNE OA physics
 - $\circ~$ Phase 1 ~ 2031-2035
 - What nu-Ar interaction measurements will inform systematic uncertainties for initial LBL OA?
 - Given latency between cross section measurements and generator implementation, can we front-load model enhancements for more robust initial LBL OA physics
 - \circ Phase 2 ~ 2036-204x
 - See "DUNE Phase 2 CDR" above

Similar interaction phase space with DUNE

Interaction Phase Space

Leverage MINERvA's characterization of NuMI beam

- Wrong-sign neutrino contamination in RHC
- Flux constraints

Nu-Ar Cross Section Landscape

- MicroBooNE 2016-2020
 - $\,\circ\,$ On-axis BNB FHC
 - \circ ~8 degrees NuMI off-axis
- SBND 2024-present

 On-axis BNB FHC
- ICARUS @ FNAL 2022-present
 On-axis BNB FHC

 \circ ~6 degrees NuMI off axis

"Status and Plans for Measurements of nu-Ar Interactions at ICARUS", M. Betancourt (NuINT 2024)

Multi-pion nu-Ar interactions

DUNE 2x2 SBND Yearly rate $_{_{\rm E}}^{\rm OI}$ Yearly rate $_{_9}^{\circ}$ ×10²¹ POT× -CC-INC -CC-INC -CC-INC -CC-0π -CC-0π 40 -CC-0π -CC-1π -CC-1π -CC-1π 0.2 -CC-2π -CC-2π -CC-2π Rate /t/1.tx -CC->2π -CC->2π -CC->2π 0.1 10 2 W (GeV) W (GeV) W (GeV)

> ~10k numuCC charged pion events expected annually (2x2+MINERvA) ==> maximum POT requested

Multi-pion nu-Ar interactions

Updated Containment Numbers – RHC

Total Number of CC Events Expected Per Year

	0 π [±]	1 π [±]	2 π [±]	3+ π [±]
0 π ⁰	8.95e+04	6.38e+04	2.52e+04	1.16e+04
$1 \pi^{0}$	2.82e+04	2.66e+04	1.11e+04	6.85e+03
2 π ⁰	8.06e+03	5.34e+03	3.24e+03	2.82e+03
$3 + \pi^0$	2.07e+03	2.01e+03	1.21e+03	1.15e+03

Number of 2x2 Only CC Contained Events Expected Per Year

	0 π [±]	1 π [±]	2 π [±]	3+ π [±]
0 π ⁰	7.83e+04	2.80e+04	7.11e+03	1.55e+03
$1 \pi^{0}$	4.57e+03	1.78e+03	4.87e+02	1.06e+02
2 π ⁰	2.52e+02	7.84e+01	5.04e+01	5.6e+00
$3 + \pi^0$	1.12e+01	0.e+00	0.e+00	5.6e+00

Multi-pion nu-Ar interactions

Updated Containment Numbers – RHC

	0 π [±]	1 π [±]	2 π [±]	3+ π [±]
0 π ⁰	8.95e+04	6.38e+04	2.52e+04	1.16e+04
$1 \pi^{0}$	2.82e+04	2.66e+04	1.11e+04	6.85e+03
2 π ⁰	8.06e+03	5.34e+03	3.24e+03	2.82e+03
$3 + \pi^0$	2.07e+03	2.01e+03	1.21e+03	1.15e+03

Total Number of CC Events Expected Per Year

Number of CC Contained Events Expected Per Year

	0 π [±]	1 π [±]	2 π [±]	3+ π [±]
0 π ⁰	8.08e+04	3.96e+04	1.24e+04	3.8e+03
$1 \pi^{0}$	1.20e+04	9.28e+03	2.95e+03	1.28e+03
2 π ⁰	2.16e+03	1.03e+03	4.98e+02	3.19e+02
$3 + \pi^0$	3.42e+02	2.46e+02	8.96e+01	6.72e+01

CC nu_e

Limited world measurements!

Table 52.5: Published measurements of electron neutrino and antineutrino cross sections from modern accelerator-based neutrino experiments.

experiment	CC inclusive	QE-like	π production	target
ArgoNeuT	[144]	-	-	Ar
COHERENT	[145]	-	-	Ι
MicroBooNE	[146, 147]	[148]	-	Ar
$MINER\nu A$	-	[149]	-	\mathbf{CH}
NOvA	[150]	-	-	CH_2
T2K	[151 - 153]	-	-	CH, H_2O

Unique opportunity for mesonless nuebar : mesonless numubar cross section ratio measurements --> critical for deltaCP analysis at DUNE

- Complementary to other experiments
- SBND (neutrino mode)
- ICARUS (neutrino & antineutrino mode)

Charged-Current electron neutrinos at 2x2 + Mx2

v _e CC total (normalised to 2.5E20 POT)							
	<mark>0</mark> π±	1 π±	2 π±	3+ π±			
<mark>0 π</mark> ο	3666.7	2968.7	1677.2	806.3			
1 πº	1504.0	1761.8	1104.6	732.1			
2 πº	551.3	592.2	542.8	391.0			
3 + π ⁰	205.7	295.1	262.4	189.2			

Counting with topologies breakdown

Table from Y. Chen

~10k mesonless nue CC (2x2+MINERvA) with maximum allowable POT

Similar approach to current mesonless numubar cross section analysis: lepton PID but limited kinematics reconstruction; differential cross section measurements with final state protons

v_e CC e[±] 2x2 contained (normalised to 2.5E20 POT)

	<mark>0</mark> π±	1 π±	2 π±	3+ π±
0 π ⁰	33.5	42.8	32.4	17.8
1 π ⁰	23.1	36.1	24.7	20.2
2 π ⁰	10.2	14.5	13.7	10.3
3 + π ⁰	5.0	7.6	7.4	5.1

ve CC e[±] detector contained (normalised to 2.5E20 POT)

	0 π±	1 π±	2 π±	3+ π±
0 π ⁰	2699.6	2190.5	1232.2	597.3
1 π ⁰	1107.8	1302.7	815.2	540.4
2 π ⁰	407.2	438.4	399.1	281.8
3+ π⁰	151.9	215.2	190.7	134.1

Takeaway messages

2x2 Demonstrator provides critical inputs needed for DUNE LBL OA

- ND-LAr technical specifications
 - Neutrino reconstruction
 - Charge-light matching efficacy
- Antineutrino-Ar cross sections
 - Unique access to multipion phase space
 - Cross section ratios to clarify interaction modeling
 - ==> leveraging MINERvA's quantitative characterization of NuMI flux
- With redundant measurements between experiments, LArTPC detector systematics comparisons
 - Wire to pixel detector response
 - Fully-active versus segmented volumes
- Inform ND-LAr shortcomings to be rectified in DUNE Phase II (e.g. MCND)

Additional opportunities: neutron production, kaon production, baryon resonances production, BSM, etc.