NP04 DAQ Performance

Alessandro Thea, Roland Sipos, Wesley Ketchum

FD1-HD TB Meeting 12th June 2024

Overview

- Functional readiness
- Current status
- Ongoing work before beam
- Performance and tuning
- Summary

Functional readiness

- TPC fully integrated with baseline Ethernet readout
- PDS calibration and readout (self-triggered & streaming) integrated with legacy FELIX readout
- Laser calibration system almost fully integrated, but few remaining issues to sort out
- CRT integration almost complete, but one main outstanding issue prevents running it
- Central Trigger Board interface has been tested, but will need some time for commissioning with first beam signals
 - Validate we see signals at the CTB, create triggers at the right timestamp for the signals, and finally ensure all beam information is available

Current status

- New stable software release prepared and in use
- Software-based trigger commissioning work largely complete
 - Stable configurations for trigger primitive generation
 - Have available simple trigger for HV anomalies
- Readout performance evaluation and optimization campaign successful
 - Optimized hardware and software with resource allocation and utilization tuning
 - No packet drops, trigger primitive generation on collection + induction planes
- High-rate triggering tests and results
 - Saturating available network capabilities
 - Trigger inhibits cause occasional frame drops

Ongoing work before beam

- "Data challenge" testing at high trigger rates
 - Recently validated that we can hit ~27Hz with 4ms readout windows without writing data. Aim for repeating the test today with data writing.
- Firmware update in timing system for triggering on timing commands needed for APA1 calibration: high priority
- DQM updates
 - Basic interactive setup is working, but want to deploy more automated generation and display of results for shifters to see
- Debugging of CRT readout / final work with CRT triggers
- Other minor testing for some software patches (e.g.: reduce spurious warnings)

Performance

- Measured maximum trigger rate: ~27 Hz with 4 ms readout
 - Main limitation: saturating available switched network's bandwidth
- The DAQ has a lot of tunable parameters via configuration
 - Trigger configurations
 - No plans for TPC-based trigger during beam run
 - Trigger capable of merging overlapping readout windows or not: proposal would be not to maintain same window size per record
 - Trigger Primitive Generation (TPG) and streaming
 - Baseline TPG configuration would be to produce TPs on two planes per APA (collection + first induction)
 - This leads to ~200 MB/s total TP rate being written to disk

- We will have configurations prepared, but may need some tuning of DAQ parameters to handle beam conditions
 - E.g.: buffering to maximize trigger rate we can handle during spill, and allow data to continue to flow out in off-spill periods
- This may take roughly a day to two days
 - Validate / understand the trigger rate we see at the DAQ
 - Given triggering conditions...
 - Work to tune to needed buffering capacity / timeout conditions on data
 - Work to tune trigger configurations to ensure quality data (e.g.: limit rate, limit overlaps / merging, etc.)

Summary

- The DAQ is performing well and ready for beam next week
- Some remaining work is ongoing
- Configuration preparations and testing on daily basis
- Outstanding questions on how much data to retain and transfer to offline
 - Feedback and agreement on DAQ readout, trigger and TPG configurations

DB Liaison: Roland Sipos HW DB contact: TBD

