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Long-baseline neutrino oscillations:
unknown PMNS parameters
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* Determine the neutrino mass Am,
 Measure d., and determine Iif vl B

CP is violated
« Determine the octant of 9.,
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Long-baseline neutrino oscillations:
Is the 3-flavor model correct?

 Measure neutrino and antineutrino
oscillation as a function of L/E Neutrnc

- Does the three-flavor model describe ~— § o o
the data?

 If yes: measure the mixing angles,
mass splittings, and CP phase

* If no: characterize the new physics o
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Long-baseline oscillations as part of a
broad physics program

* Large, sensitive underground detectors are
excellent to:

e Observe supernova burst neutrinos

* Measure solar and atmospheric neutrinos

e Search for new physics of cosmogenic origin
e Search for nucleon decays and other rare

processes
* Intense beams with capable near detectors are e et /32';27{:9
excellent to: S —
. . : AR el (11} e
» Search for new physics produced in the L '"muwn||u||u||||I|I||II|| |||\n|||11||||||p||||| ” ” || " ” ” I
beamline ||

e Search for new physics in rare interactions (i.e.
neutrino tridents)
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Wideband (anti)neutrino beamline at with >2MW intensity
Modular underground LArTPC Far Detector with 240 kt fiducial mass

Movable LArTPC Near Detector with muon spectrometer + on-axis
detector

Global collaboration of >1400 scientists and engineers
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LBNF beamline: lots of nheutrinos

DUNE neutrino beam is far higher intensity
than present-day experiments

Very high flux between oscillation minimum
(1.27 GeV) and maximum (2.54 GeV), with
coverage of second maximum (0.8 GeV)

v /cm?/GeV/year (x 10'?)

Recent development: ACE-MIRT upgrades
could increase beam intensity to >2 MW by
decreasing the time between spills from
1.2s to 0.6s, can be achieved before DUNE
operations begin

More neutrinos sooner!
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LArTPC: flavor & energy reco over a

broad range of topologies

' DUNE FD1-HD DUNE FD1-HD :
.simulated 3.0 GeV v, simulated 2.5 GeV v_ -

* 60% of interactions at DUNE energy have final state pions —» LArTPC
enables precise hadron reconstruction

* EXxcellent e/p separation
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Far detector: two readout technologies

Top CRPs =T L T

Bottom CRPs

AR
ST

* Horizontal drift (HD) using wire readout planes, four drift regions
* Vertical drift (VD) using two larger 6.25m drift regions and central cathode

* Simpler to install - first DUNE FD module will use vertical drift
* Baseline design for modules 3 and 4
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Near detector: systematic constraints
for precision physics

* ND is a (movable) LArTPC + muon spectrometer,
and a (fixed) magnetized tracker + calorimeter

e Off-axis data in different neutrino fluxes constrains
energy dependence of neutrino cross sections

e Same target, same technology - inform
predictions of reconstructed E, in Far Detector

* Neutrino pile-up —» modular design with pixelated,
natively 3D readout to isolate activity from
Individual neutrinos
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SAND: on-axis detector using KLOE
magnet and calorimeter

Event display from Matteo
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Fixed component of ND repurposes existing
solenoid magnet and ECAL from KLOE

Plan is to build a collider-like detector in a
neutrino beam: low-density straw tube tracker
with thin targets, surrounded by calorimetry

Fine-grained, particle-by-particle reconstruction
with very low rescattering, excellent for highly
exclusive neutrino-nucleus measurements

Being (carefully) taken apart at Frascati for the
move to the US
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V4V, per 0.5 GeV

V4V, per 0.5 GeV

Far Detector energy spectra are
sensitive to CP violation
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o If dcp ~ -11/2, DUNE will measure an enhancement in

electron neutrino appearance, and a reduction in electron
antineutrino appearance
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Far Detector energy spectra are
sensitive to CP violation

e E—— NO sin’0,, = 0.44
000k DUNE FD v, sin Oy

N B i o If dcp ~ -11/2, DUNE will measure an enhancement in
g TF o electron neutrino appearance, and a reduction in electron
* s FH Vv antineutrino appearance
- If the mass ordering is normal, DUNE will measure a much
ok larger enhancement in electron neutrino appearance, and a
i reduction in electron antineutrino appearance
Reconstructed E, (GeV)
3 e oo « MO, o5, and 8,; all affect spectra with different shape -
T wf T SIS additional handle on resolving degeneracies
L — * If new physics is present, there may be no combination of
I oagin 'V MO, d.p, and 8,, that fits data
’ 1 ’ Hiconst:ucted I; (Gev;s
12 DUNE - Neutrino24 - Chris Marshall B ROCLIESTER ME




Mass Ordering Sensitivity (0)

Long-baseline sensitivity
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Mass ordering at >50 in <3 years, no matter the
value of o, or any other parameter

Long-term: DUNE can establish CP violation at
>30 for >75% possible values of d.p
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Precision measurements

__[ounesmuain " —w- 1 e Mass ordering at >50 In <3 years, no matter the

g | Momslowems | value of d.p or any other parameter

40 i« Long-term: DUNE can establish CP violation at

Sl | >30 for >75% possible values of O¢p
a0 s s @ 6-16° precision in dcp

EposE (MBS
ol o1 * World-leading precision (for long-baseline

1 experiment) in 6,3 and Am2 — comparisons with
1 reactor measurements are sensitive to new
1 physics
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Beyond three flavors
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e Broad range of L/E at ND and FD - search for non-SM oscillations

» High statistics neutrino and antineutrino measurements — search for CPT
violation

* Very large matter effect — uniquely sensitive to some NSI
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Natural neutrino sources at DUNE FD
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DUNE FD will observe atmospheric,
solar, and supernova neutrinos

Argon target gives unigue sensitivity
to MeV-scale electron neutrinos

e V., + oAr - e +%K* (E, > 1.5 MeV)
e v, +©Ar - e+ +«Cl* (E, > 7.5 MeV)
e V, te - v, +e (pointing)

Highly complementary to other
experiments (Hyper-K, JUNO) that
predominantly see v, via IBD
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Particle astrophysics with supernova
burst neutrinos

° DUNE WI” Observe ~th0usands Of % Infall :Neutronlzatlon Accretion Cooling _Ve
neutrino interactions from a galactic 5 """ Ve
supernova burst 5 X

-l

* Time and energy spectra are sensitive \

to core collapse mechanism and 1 Time (seconds)

stellar evolution

* Neutronization through electron " =3 . -
capture in the core (unique to Tep S o G cibpwerd
DUNE - determine neutrino mass :* 8 " ] DUNE v,
ordering) S . ﬁﬁf il
. . . 10 alactic Center iy mé il ' l :
- Dominated by matter falling into .. L 0 R ST
Distante to supernova (kpc) A - & : i

Time (seconds)

core during accretion

* Emission cools as neutrinos
diffuse

<D
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Supernova pointing and multi-

messenger astronomy

 DUNE can identify elastic
scatters by the absence of
nuclear de-excitation photons

£
‘;;]
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* Enables pointing resolution as
good as ~5° depending on
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: I - = . < location
10 MeVvtevre ] - ~ *20MeVv CC 1« Pagper just submitted to arXiv
N T [E e (or maybe not yet, update this)
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Counts 400 kT-year

21 (eV?)

Am?2
[=)]

DUNE sensitivity to solar neutrinos

Neutrino Energy (MeV)

e, * Despite a large neutron background at low

o energies, DUNE has excellent sensitivity to ¢B
solar neutrinos above ~10 MeV, and discovery

sensitivity to the hep solar flux

 DUNE can improve upon existing solar oscillation
measurements via day-night asymmetry induced

T by matter effects — comparison with JUNO

~» Current analysis assumes dedicated trigger and
flash matching (needed for fiducialization)

"~ 400 kt-yrs

5in2012
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Atmospheric neutrinos: angle
reconstruction including hadrons

Phys. Rev. X 13, 041055 (2023

.o Main advantage of DUNE for atmospheric neutrinos
IS the reconstruction of the neutrino direction

* Including reconstructed hadrons substantially

I'  improves angle resolution, especially at lower
* e T neutrino energies

10k s \
-1 -0.8 -0.6 -04 =02

DUNE Preliminary

o tettusen, T Juwewws] ¢ Potential to extend to low energies has been
Eaof e : studied phenomenologically, see Phys. Rev. Lett.
5wl : 123, 081801 (2019)
a“ Lo, i+ DUNE analysis in progress
] 10:_ Ve Cq | ...:::::”,“,..."|:
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BSM searches with the Far Detector

p—scat: DUNE-40 kt-yr, 0 BGs and HK-380 kt-yr, 0 BGs
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DUNE Far Detector is sensitive to rare processes
(nucleon decay, n-n oscillation, etc.) and new
physics of cosmogenic origin

Key strengths of DUNE:

* Ability to detect low-energy particles (for iIBDM,
signal is a soft e/p and spatially proximate e+/e-

pair)
* Ability to reconstruct direction including hadrons

(i.e. for BDM produced in Sun or Galactic
Center)
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BSM searches with the Near Detector

Phys. Rev. D 100, 115029 (2019)
0

DUNE Near Detector is sensitive to rare
processes in the beamline (HNL, LDM) and to
BSM contributions to neutrino interactions (v
tridents)

Key strengths of DUNE:
e 120 GeV proton beam and very high intensity
* LAr ND with 50-70t fiducial mass

-* Low density ND (SAND) - increased S/B for
decays in ND volume

0.100
my (GeV)
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DUNE construction: Phase |

* Full Near and Far Site facility

* Two LArTPC modules (VD & HD), each 17 kt Ar
* 1.2 MW upgradeable neutrino beamline
 Movable LArTPC ND+muon catcher, SAND

UNIVERSITY of
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DUNE construction: Phase |l

e Two additional FD modules

 Beamline upgrade to >2MW (could happen before
operations begin)

* More capable Near Detector (ND-GAr)

UNIVERSITY of
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P5 report in the US strongly endorses
DUNE Phase | & |l

narios, complets construction projects and suppart aperations of angamg  * DUTNG the next decade (2024-
experiments and research to enable maximum science. .
b. The first phase of DUNE and PIP-II to open an era of precision neutrino measurements 2034) 1 PS recom mended -

* Highest priority: Complete DUNE

that include the determination of the mass ordering among neutrinos.

Recommendation 2: Construct a portfolio of major projects that collectively . .
study nearly all fundamental constituents of our universe and their interactions, Phase I and beg In Operatlons
as well as how those interactions determine hoth the cosmic past and future.
* Implement ACE-MIRT
b. Are-envisioned second phase of DUNE with an early implementation of an enhanced .
2.1 MW beam—ACE-MIRT—a third far detector, and an upgraded near-detector acceleratorlbeamllne upgrades
complex as the definitive long-baseline neutrino oscillation experiment of its kind befo re Operatlons begln
Recommendation 4: Invest in a comprehensive initiative to develop the resourc- . .
es—theoretical, computational, and technological—essential to realizing our ® DeS|g N and bU||d FD3 and
20-year strategic vision. This includes an aggressive R&D program that, while MCN D

e. Conduct R&D efforts to define and enable new projects in the next decade, including

detectors for an e” e~ Higgs factory and 10 TeV pCM collider, Spec-S5. DUNE FD4, ° Perform R&D tOwal’d FD4

MuZ2e-Il, Advanced Muon Facility, and line intensity mapping

Elucidate the Mysteries
of Neutrinos

25 DUNE - Neutrino24 - Chris Marshall
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Bui Iding DUNE: construction schedule

 Far site excavation is complete

* Next: Building & Site Infrastructure work
until mid-2025

* Cryostat warm structure is on its way to
US from CERN to be installed in 2025-
26

e Detector installation in 2026-27

* Purge and fill with argon in 2028

* Physics in 2028 or early 2029

 Beam physics with Near Detector 2031

Transport to A Coruna harbour: April
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Phase Il FD: additional mass +
opportunities to expand physics reach
-~ APEX forFfD3

* Vertical Drift module is the baseline design for
Phase Il FD modules

* Pursuing low-hanging improvements to light
collection for FD3, including Aluminum Profiles
with Embedded X-ARAPUCA, essentially
integrating light detectors into field cage

 FD4 is the “Module of Opportunity”, and more
ambitious designs are being considered,
including a very low background module,
additional Xe doping, pixel readout, and non-
LAr technologies

Possible FD4 Module of

Standard DUNE-like vertical drift
module

Opportunity (SLOMO)

Acrylic box with reflective foils
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ProtoDUNE preparlng for second runs

M’@ﬂ BOMISHAY 0

* Successful prototype of
hoizontal drift in 2018
(ProtoDUNE-SP)

. . ProtoDUNE-HD completed filling
30t April, running since May,
with beam coming this week

=

DUNE:ProtoDUNE~SP‘Run 5779 Event 12360

10.0 ©
— -5 = ¢ LArwill be transferred to
., 5 ProtoDUNE-VD in October for
A - ,s 3 funning starting in early 2025
5 :)tl?(ﬂgilng 0.0 %
4000 miﬁ m —2.56
0 100 200 300 400
Wire Number
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ND-LAr 2x2 prototype: DUNE'’s first
neutrmo detector in a beamline

* Individual ND-LAr prototype modules P
have been operated with cosmics at Bern |} =

e “2x2” is a four-module integration test in
the Fermilab NuMI beam

* Re-purposed MINERVA scintillator and
calorimeter planes mimic the role of TMS in
the DUNE ND

 Will demonstrate reconstruction with
natively 3D readout in a neutrino beam with
similar event rate to DUNE

JU

/M) \

12 MINERVA 2x2 Cryostat 32 MINERVA
Modules and 4 TPCs Modules
. . S| UNIVERSITY of 0
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ND-LAr 2x2 prototype: DUNE'’s first
neutrmo detector in a beamline

* Filling completed on some day

e Some statement about status
mote to be determined

photos
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Summary

« DUNE is a long-baseline oscillation experiment and neutrino observatory

« Unique and complementary reach in oscillations, MeV-scale neutrinos, and BSM
searches
 DUNE has an active prototyping program, with excavation complete and components
under construction — start of science before the neutrino turns 100

» See also 33 DUNE posters!
IRy LD TRRT e

\ v NEUTRINO
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Backup Slides
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Accelerator Complex Evolution:
Main Injector Ramp & Target

PIP-1l Booster
Operation scenario Present PIP-II ACE (a) | ACE (b) |units
MI 120 GeV cycle time 1.13 1.2 0.9 0.7 S
Booster intensity 4.7 6.5 1012 p
Booster ramp rate 15 20 Hz
MI power 0.96 1.2 1.7 2.1 MW
cycles for 8 GeV 6 12 6 2
Available 8 GeV power 30 83 56 24 kW

: : @ )| UNIVERSITY of =
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Accelerator Complex Evolution:
Main Injector Ramp & Target

oo N Col N .., * Many beamline
‘?/ components are
v designed for 2.4
v Mw
e Others can likely
be operated to 2

MW with minor
modifications

e Target is the most

24,8 ? . critical
vf 24 = 24 2 . : 24
L e s e oanr ~up gnr 8 component
Wind Wit Shizlding Pangls Im :;m\r
. . & ] UNIVERSITY of =N ,\\}
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