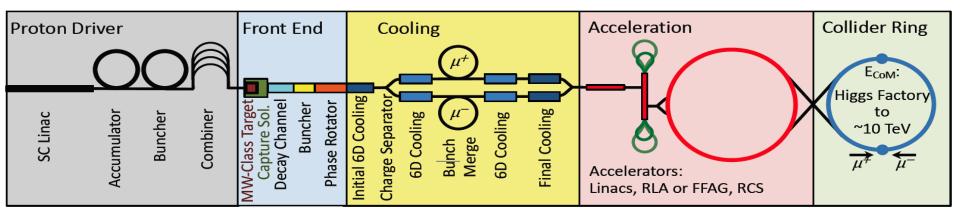


Muon Collider

D. Schulte
On behalf of the International Muon Collider Collaboration

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.


FNAL, October, 2024

Muon Collider Overview

Would be easy if the muons did not decay Lifetime is $\tau = \gamma \times 2.2 \mu s$

Short, intense proton bunch

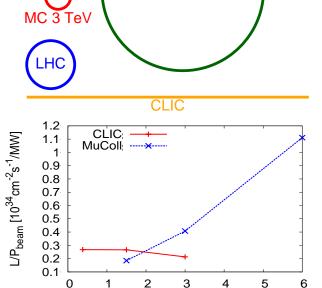
Ionisation cooling of muon in matter

Acceleration to collision energy

Collision

Protons produce pions which decay into muons muons are captured

Muon Collider Promises



US Snowmass Implementation Task Force: Th. Roser, R. Brinkmann, S. Cousineau, D. Denisov, S. Gessner, S. Gourlay, Ph. Lebrun, M. Narain, K. Oide, T. Raubenheimer, J. Seeman, V. Shiltsey, J. Straight, M. Turner, L. Wang et al.

	CME [TeV]	Lumi per IP [10 ³⁴ cm ⁻² s ⁻¹]	Years to physics	Cost range [B\$]	Power [MW]
FCC-ee	0.24	8.5	13-18	12-18	290
ILC	0.25	2.7	<12	7-12	140
CLIC	0.38	2.3	13-18	7-12	110
ILC	3	6.1	19-24	18-30	400
CLIC	3	5.9	19-24	18-30	550
MC	3	1.8	19-24	7-12	230
MC	10	20	>25	12-18	300
FCC-hh	100	30	>25	30-50	560

Judgement by ITF, take it cum grano salis

FCC

E_{cm} [TeV]

IMCC

Develop high-energy muon collider as option for particle physics:

- Muon collider promises sustainable approach to the energy frontier
 - limited power consumption, cost and land use
- Technology and design advances in past years
- Reviews in Europe and US found no unsurmountable obstacle

Current accelerator R&D Roadmap identifies the required work

Has been developed with the global community

IMCC Goals

- Assess and develop the muon collider concept for a O(10 TeV) facility
- Identify potential sites to implement the collider
- Develop initial muon collider stage that can start operation around 2050
- Develop an R&D roadmap toward the collider

IMCC: Iternational Muon Collider Collaboration

Label	Begin	End	Description		ational		imal
					[kCHF]		[kCHF]
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0
			gation system				
MC.MDI	2021	2025	Machine-detector	15	0	15	0
			interface				
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
MC.ACC.HE	2022	2025	High-energy com-	11	0	7.5	0
MC ACC MC	2021		plex	47			
MC.ACC.MC	2021	2025	Muon cooling sys-	47	0	22	0
MC ACC P	2022	2026	tems	26	0	3.5	0
MC.ACC.P	2022	2026	Proton complex Collective effects	18.2	0	18.2	0
MC.ACC.COLL	2022	2025		18.2	0	18.2	0
MC ACC ALT	2022	2025	across complex High-energy alter-	11.7	0	0	0
MC.ACC.ALI	2022	2023	natives	11.7	U	0	U
MC HEM HE	2022	2025	High-field magnets	6.5	0	6.5	0
MC.HFM.RE	2022	2025	High-field	76	2700	20	0
MC.HFM.SOL	2022	2020	solenoids	70	2700	29	U
MC.FR	2021	2026	Fast-ramping mag-	27.5	1020	22.5	520
MC.PK	2021	2020	net system	27.3	1020	22.3	320
MC.RE.HE	2021	2026	High Energy com-	10.6	0	7.6	0
MCM III	2021	2020	plex RF	10.0		7.0	
MCREMC	2022	2026	Muon cooling RF	13.6	0	7	0
MC.RF.TS	2024	2026	RF test stand + test	10	3300	0	0
			cavities				
MC.MOD	2022	2026	Muon cooling test	17.7	400	4.9	100
			module				
MC.DEM	2022	2026	Cooling demon-	34.1	1250	3.8	250
			strator design				
MC.TAR	2022	2026	Target system	60	1405	9	25
MC.INT	2022	2026	Coordination and	13	1250	13	1250
			integration				
			Sum	445.9	11875	193	2445

Table 5.5: The resource requirements for the two scenarios. The personnel estimate is given in full-time equivalent years and the material in KCHE. It should be noted that the personnel contains a significant number of PhD students. Material budgets do not include budget for travel, personal IT equipment and intuits for a support of the personal in the personnel of the personnel in the personnel in

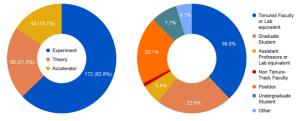
http://arxiv.org/abs/2201.07895

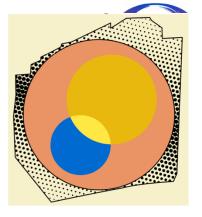
strong interest (again)

US Muon Collider Inauguration Meeting beginning of August at FNAL showed the

Full integration with US planned and started CERN-DoE agreement in preparation

Need to move forward with US, while US is getting organised In particular R&D plan has to be common plan


Use Organization Committee of FNAL with some additional members as de facto US organisation, providing members for


- Editorial Board
- Authors of ESPPU report
- Cost estimate
- Next annual meeting programme committee

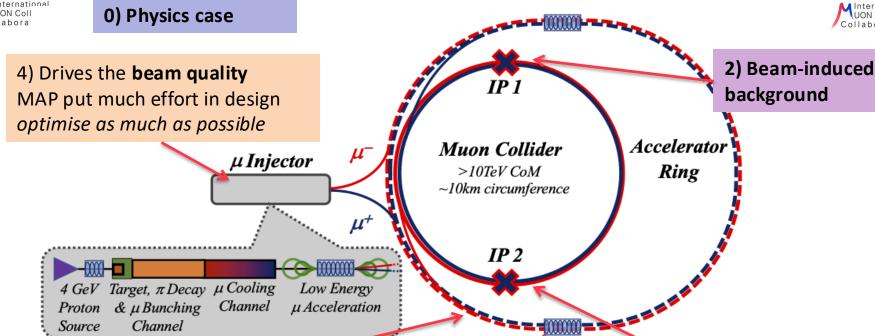
"Open" publications rules are now very important during the transition Anyone can send papers to IMCC-PSC@cern.ch for IMCC endorsement

US Progress

In early August, held an open meeting of the US community
 274 (+25 virtual) participants

Michael Begel (BNL) Pushpa Bhat (Fermilab) Philip Chang (University of Florida) Sarah Cousineau (ORNL) Nathaniel Craig (University of California, Santa Barbara) Sridhara Dasu (University of Wisconsin) Karri DiPetrillo (University of Chicago) Spencer Gessner (SLAC) Tova Holmes (University of Tennessee) Walter Hopkins (ANL) Sergo Jindariani (Fermilab) Donatella Lucchesi (University of Padova/INFN) Patrick Meade (Stony Brook University) Isobel Ojalvo (Princeton University) Simone Pagan Griso (LBNL) Diktys Stratakis (Fermilab)

And Mark Palmer, Stephen Gourlay, Kevin Black, Lawrence Lee


IMCC Partners

				• • • • • • • • • • • • • • • • • • • •			
IEIO	CERN	IT	INFN	SE	ESS	US	Iowa State University
FR	CEA-IRFU		INFN, Univ., Polit. Torino		University of Uppsala		University of Iowa
	CNRS-LNCMI		INFN, Univ. Milano Biocca	NL	University of Twente		Wis consin-Madison
	Mines St-Etienne		INFN, Univ. Padova	FI	Tampere University		University of Pittsburgh
DE	DESY		INFN, Univ. Pavia	LAT	Riga Technical University		Old Dominion
	Technical University of Darmstadt		INFN, Univ. Bologna	СН	PSI		Chicago University
	University of Rostock		INFN Trieste		University of Geneva		Florida State University
	КІТ		INFN, Univ. Bari		EPFL		RICE University
UK	RAL		INFN, Univ. Roma 1	BE	Univ. Louvain		Tennessee University
	UK Research and Innovation		ENEA	AU	HEPHY		MIT Plasma science center
	University of Lancaster		INFN Frascati		TU Wien		Pittsburgh PAC
	University of Southampton		INFN, Univ. Ferrara	ES	I3M		Yale
	University of Strathclyde		INFN, Univ. Roma 3		CIEMAT		Princeton
	University of Sussex		INFN Legnaro		ICMAB		Stony Brook
	Imperial College London		INFN, Univ. Milano Bicocca	China	Sun Yat-sen University		Stanford/SLAC
	Royal Holloway		INFN Genova		IHEP		
	University of Huddersfield		INFN Laboratori del Sud		Peking University	DoE labs	FNAL
	University of Oxford		INFN Napoli		Inst. Of Mod. Physics, CAS		LBNL
	University of Warwick	Mal	Univ. of Malta	ко	Kyungpook National University		JLAB
	University of Durham	EST	Tartu University		Yonsei University		BNL
	University of Birmingham	PT	LIP		Seoul National University	Brazil	CNPEM
	University of Cambridge	Signed Mo	C, requested MoC, contributor	India	CHEP		Market Company

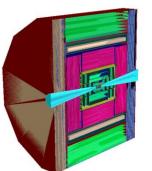
Key Challenges

3) Cost and **power** consumption limit energy reach e.g. 35 km accelerator for 10 TeV, 10 km collider ring Also impacts **beam quality**

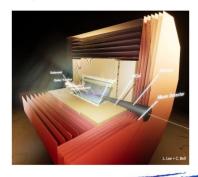
1) Dense neutrino flux mitigated by mover system and site selection

D. Schulte, Muon Collider, Demonstrator Workshop, FNAL, October 2024

Important technical progress But cannot cover it here


Physics and Detector Concepts

Minternationa MUON Collide Collaboration

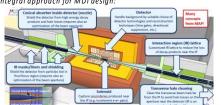

Mucol Two detector concepts are being developed

MUSIC

(MUon Smasher for Interesting Collisions)

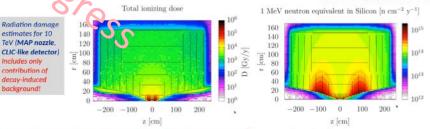
A "New Detector Concept", maybe a flashier name can be found

D. Schulte, Muon Collider, Birmingham, July 2024


MDI and beam-induced background

Activities in SY/STI:

- Detailed simulation of detector background and radiation damage by means of FLUKA
- Optimization of MDI (nozzle, shielding) and IR for 10 TeV collider ongoing,
- First engineering considerations for nozzle


Integral approach for MDI design:

Radiation damage in detector (10 TeV)

For IMCC lattice version v0.4

Per year of operation (140d)	lonizing dose	Si 1 MeV neutron-equiv. fluence
Vertex detector	200 kGy	3×10 ¹⁴ n/cm ²
Inner tracker	10 kGy	1×1015 n/cm2
ECAL	2 kGy	1×10 ¹⁴ n/cm ²

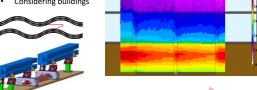
IMCC plans for final ESPPU report:

- Redo radiation damage calculations with optimized 10 TeV nozzle and lattice (and new detector design)
 - Calculate contribution of other source terms (e.g. incoherent pairs, halo losses

n the detector (3 TeV and 10 TeV)

Muon Decay and Neutrino Flux

Muon decays in collider ring


- Impact on detector
- Have to avoid dense neutrino flux

Aim for negligible impact from arcs

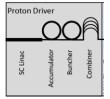
- Similar impact as LHC · At 10 TeV go from acceptable to
 - negligible with mover system Mockup of mover system
 - planned · Impact on beam to be checked

Detailed studies by RP and FLUKA experts

- Impact on surface
- Considering buildings

Impact of experimental insertions

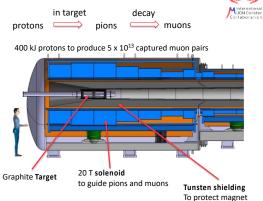
- 3 TeV design acceptable with no further work
- But better acquire land in direction of straights, also for 10 TeV
- Detailed studies identified first location and orientation close to CERN
 - Poiint to uninhabited area in Jura and Mediterranian sea



D. Schulte, Muon Collider, Birmingham, July 2024

MuCol

Proton Complex and Target



5 GeV proton beam, 2 MW = 400 kJ x 5 Hz Power is at hand

ESS and Uppsala are woring on merging beam into high-charge pulses

· Indication is that 10 GeV would be preferred

D. Schulte, Muon Collider, INFN, May 2024

Site Studies

Candidate sites CERN, FNAL, potentially others (ESS, JPARC, ...)

Study is mostly site independent

- Main benefit is existing infrastructure
- Want to avoid time consuming detailed studies and keep collaborative spirit
- Will do more later

Some considerations are important

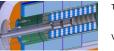
- Neutrino flux mitigation at CERN
- Accelerator ring fitting on FNAL site

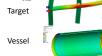
Potential site next to CERN identified

- · Mitigates neutrino flux
 - · Points toward mediterranean and uninhabited area in Jura
- Detailed studies required (280 m deep)

D. Schulte, Muon Collider, INFN, May 2024

Geoprofiler Map


Ta get solenoid design ongoing

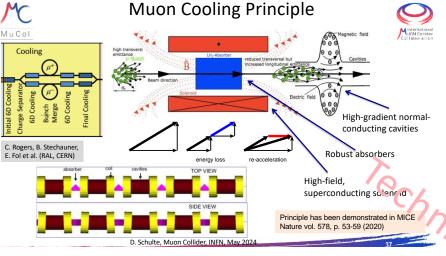

ther arge bore 20 T HTS or 15 T LTS with 5 T insert

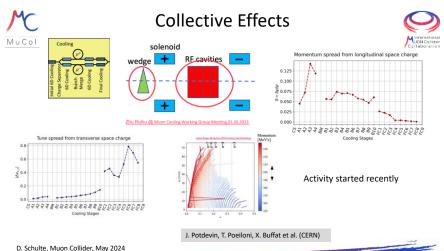
Our work is relevant for fusion

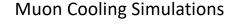
Cooling, vacuum, mechanics, ..

Integration

Liquid metal target







A. Lechner, D. et a

D. Schulte, Muon Collider, INFN, May 2024

Reminder: multiple scattering is not straightforward to simulate

Developed RFTrack to allow simualtion of the muon cooling

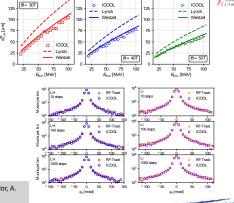
Integration of novel model in RFTrack

Benchmarking confirms validity

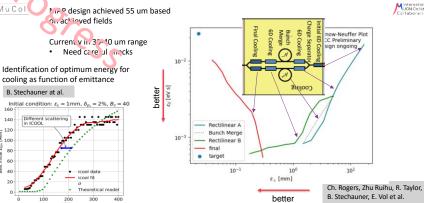
Recently discovered:

MuCol

- · Some bug in data extraction routine
- · Step size dependence

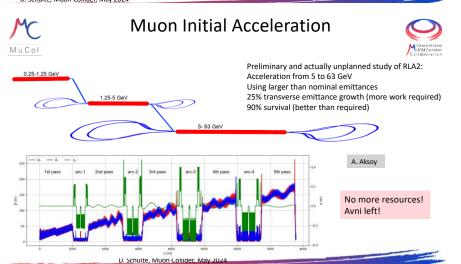

Both seem to be solved by now

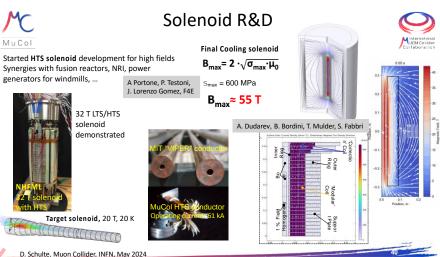
But would like to review previous results

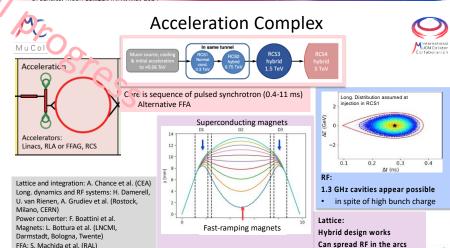

R Stackburger

B. Stechauner, E. Fol, Taylor, A. Latina, P. Valdor et al.

D. Schulte, Muon Collider, May 2024

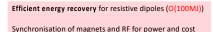






D. Schulte, Muon Collider, May 2024

Cooling Cell Technology L. Rossi et al. (INFN, Milano, MuCol STFC, CERN). J. Ferreira Somoza et al. SMALIG Integrated cooling cell tight constraints additional technologies (absorbers, instrumentation....) early preparation of -0.3 demonstrator facility Most complex example 12 T z (m) Liquid hydrogen, Solenoid field: 50 T Identified windows and absorbers as critical for high-density muon beam Pressure rise mitigated by using Hgas with calibrated density μ-stream First window test in HiRadMat Test of 1 um Si₃N₄. B. Stechauner, J. Very high energy deposition (15x) Ferreira Somoza et al. leads to deformation but no rupture Absorber length s [cm] D. Schulte, Muon Collider, May 2024



D. Schulte, Muon Collider, INFN, May 2024

Fast-ramping Magnet System

5.07 kJ/m

5.65...7.14 kJ/m

Could consider using HTS dipoles for largest ring

Simple HTS racetrack dipole could match the beam requirements and aperture for static magnets

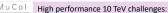
Differerent power converter options investigated

Commutated resonance (novel)

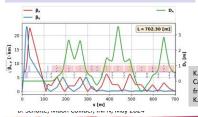
Attractive new option

- Better control
- Much less capacitors

Beampipe study

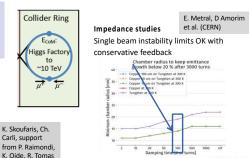

Eddy currents vs impedance Maybe ceramic chamber with

D. Schulte, Muon Collider, INFN, May 2024


Collider Ring

- Very small beta-function (1.5 mm)
- Large energy spread (0.1%) Maintain short bunches

10 TeV collider ring in progress:


- around 16 T HTS dipoles or lower Nb₃Sn
- final focus based on HTS
- Need to further improve the energy acceptance by small factor

3 TeV:

MAP developed 4.5 km ring with Nb₃Sn

- magnet specifications in the HL-LHC range
- 5 mm beta-function

Collective Effects 66 turns 17 turns 55 turns 750 -1500 GeV 1.5 -5.0 TeV Linacs, RLA or FFAG, RCS Impedance studies Beampipe study Single beam instability limits OK with Eddy currents vs impedance conservative feedback Maybe ceramic chamber with stripes Impedance model growth below 20 % after 3000 turns Ceramic Copper r 50 um on Tunesten at 300 H Collider Ring

Collider Ring Technologies

D. Schulte, Muon Collider, May 2024

100

X [mm]

K. Skoufaris, Ch. Carli, D. Amorim, A.

L. Bottura, D. Calzolari et al.

Lechner, R. Van Weelderen, P. De Sousa.

Shielding

Study of magnet limitations (stress, loadline, cost, ...) Power loss die to huon decay 500 W/m L. Bottura et al. FLUKA simu ation of required shielding: Possible at higher cost/lower temperatu 20-40 mm tungesten sholding (about OK-safe) 3 TeV/early 10 TeV design Few W/m in magnets No problem with radiation dora-Coil Beam aperture Cu coating 125 High luminosity 10 TeV design range Heat intercept _ 100 -Beam pipe Kapton ins. Nb3Sn at 4.5 K and 15 cm aperture HTS at 20 K and 10-14 cm aperture Clearance Can reach 16-14 T, cost limited Can reach ~11 T. stress and margin limited Magnet coil Maturity expected in 15 years · Factor 3 cost reduction assumed Can reach 16 T and 16 cm with more OK for current 3 TeV/early 10 TeV design

E. Metral, D Amorim, E. Kvikne

et al. (CERN)

Different cooling scenarios studied

< 25 MW power for cooling possible Shield with CO2 at 250 K (preferred) or water Support of shield is important for heat transfer Discussion on options for magnet cooling

material or lower temperature

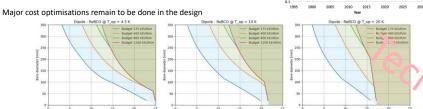
Maturity takes likely >15 years

· But maybe OK in 15 years at lower performance, similar to Nb3Sn

D. Schulte, Muon Collider, Demonstrator Workshop, FNAL, October 2024

Dipole Cost

Nh3Sn (RRP) -Nb3Sn (US-LARP)



Key cost drivers are based on sound models . E.g. RCS with trade-off between RF and magnet cost

A part of the cost will be based on scaling from other projects

A part of the cost depends on future developments of technology beyond our study

. E.g. cost of superconductor

CDR Phase, R&D and Demonstrator Facility

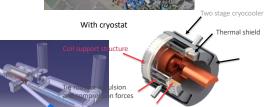
D. Schulte, Muon Collider, Birmingham, July 2024

Broad R&D programme can be distributed world-wide

- Models and prototypes
- · Magnets, Target, RF systems, Absorbers, ...
- CDR development
- Integrated tests, also with beam

Cooling demonstrator is a key facility

· look for an existing proton beam with significant power


Different sites are being considered

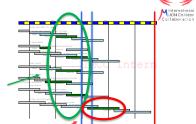
- CERN. FNAL. ESS ...
- Two site options at CERN

Muon cooling module test is important

- INFN is driving the work
- · Could test it at CERN with proton beam

D. Schulte, Muon Collider, INFN, May 2024

Magnet Roadmap


Assume: Need prototype of magnets by decision process

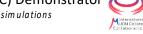
Consensus of experts (review panel):

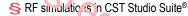
- Anticipate technology to be mature in O(15 years):
 - . HTS solenoids in muon production target, 6D cooling and
 - HTS tape can be applied more easily in solenoids
 - Strong synergy with society, e.g. fusion reactors
 - Nb₃Sn 11 T magnets for collider ring (or HTS if available): 150mm aperture, 4K
- This corresponds to 3 TeV design
- · Could build 10 TeV with reduced luminosity performance
 - · Can recover some but not all luminosity later

Still under discussion:

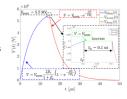
- · Timescale for 10 TeV HTS/hybrid collider ring magnets
- · For second stage can use HTS or hybrid collider ring magnets

2036+2037 decision process

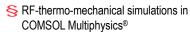

Strategy:


- HTS solenoids
- Nb₃Sn accelerator magnets
- HTS accelerator magnets

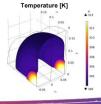
Seems technically good for any future project

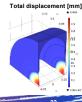

704 MHz cavity for the Muon Cooling (MC) Demonstrator

RF design and coupler RF-thermo-mechanical simulations



- S Calculation of the pulse shape
- S Computation of the ain RF figure of merits
- S Optimization of the cavity shape





Operation start

- S Thermally-induced stress-strain state and frequency detuning
- S Mechanical stress and deformations and Lorentz Force Detuning (LFD) analysis

D. Schulte, Muon Collider, April 2024

Interim Report (144 pages)

https://arxiv.org/abs/2407.12450

Executive Summary

Implementation Considerations

Physics Potential

Physics, Detector and Accelerator Interface

Detector

Accelerator design

Accelerator technologies

Synergies

R&D programme development

Collaboration Development

arXiv > physics > arXiv:2407.12450

Search...

Help | Adva

Physics > Accelerator Physics

[Submitted on 17 Jul 2024]

Interim report for the International Muon Collider Collaboration (IMCC)

C. Accettura, S. Adrian, R. Agarwal, C. Ahdida, C. Aimé, A. Aksoy, G. L. Alberghi, S. Alden, N. Amapane, D. Amorim, P. Andreetto, F. Anulli, R. Appleby, A. Apresyan, P. Asadi, M. Attia Mahmoud, B. Auchmann, J. Back, A. Badea, K. J. Bae, E. J. Bahng, L. Balconi, F. Balli, L. Bandiera, C. Barbagallo, R. Barlow, C. Bartoli, N. Bartosik, E. Barzi, F. Batsch, M. Bauce, M. Begel, J. S. Berg, A. Bersani, A. Bertarelli, F. Bertinelli, A. Bertolin, P. Bhat, C. Bianchi, M. Bianco, W. Bishop, K. Black, F. Boattini, A. Bogacz, M. Bonesini, B. Bordini, P. Borges de Sousa, S. Bottaro, L. Bottura, S. Boyd, M. Breschi, F. Broggi, M. Brunoldi, X. Buffat, L. Buonincontri, P. N. Burrows, G. C. Burt, D. Buttazzo, B. Caiffi, S. Calatroni, M. Calviani, S. Calzaferri, D. Calzolari, C. Cantone, R. Capdevilla, C. Carli, C. Carrelli, F. Casaburo, M. Casarsa, L. Castelli, M. G. Catanesi, L. Cavallucci, G. Cavoto, F. G. Celiberto, L. Celona, A. Cemmi, S. Ceravolo, A. Cerri, F. Cerutti, G. Cesarini, C. Cesarotti, A. Chancé, N. Charitonidis, M. Chiesa, P. Chiggiato, V. L. Ciccarella, P. Cioli Puviani, A. Colaleo, F. Colao, F. Collamati, M. Costa, N. Craig, D. Curtin, L. D'Angelo, G. Da Molin, H. Damerau, S. Dasu, J. de Blas, S. De Curtis, H. De Gersem et al. (287 additional authors not shown)

The International Muon Collider Collaboration (IMCC) [1] was established in 2020 following the recommendations of the European Strategy for Particle Physics—Accelerator R&D Roadmap by the Laboratory Directors Group [2], hereinafter referred to as the the European LDG roadmap. The Muon Collider Study (MuC) covers the accelerator complex, detectors and physics for a future muon collider. In 2023, European Commission support was obtained for a design study of a muon collider (MuCol) [3]. This project started on 1st March 2023, with work—packages aligned with the overall muon collider studies. In preparation of and during the 2021–22 U.S. Snowmass process, the muon collider project parameters, technical studies and physics performance studies were performed and presented in great detail. Recently, the PS panel [4] in the U.S. recommended a muon collider R&D, proposed to join the IMCC and envisages that the U.S. should prepare to host a muon collider, calling this their "muon shot". In the past, the U.S. Muon Accelerator Programme (MAP) [5] has been instrumental in studies of concepts and technologies for a muon collider.

Technology Maturity

Important timeline drivers:

- Magnets
 - HTS technology available for solenoids (expect mature for production in 15 years)
 - Nb₃Sn available for collider ring, maybe lower performance HTS (expect in 15 years)
 - High performance HTS available for collider ring (may take more than 15 years)
- **Muon cooling technology and demonstrator** (expect demonstrator operational in O(10 years), with enough resources, allows to perform final optimization of cooling technology)
- Detector technologies and design (expect in 15 years)

Other technologies are also instrumental for performance, cost, power consumption and risk mitigation

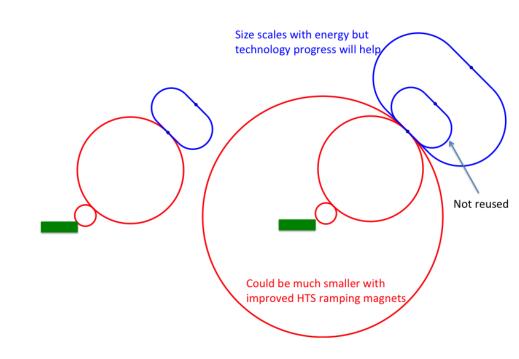
• but believe that sufficient funding can accelerate their development sufficiently

Other important considerations for the timeline are

- Civil engineering
- Decision making
- Administrative procedures

Staging

Energy staging

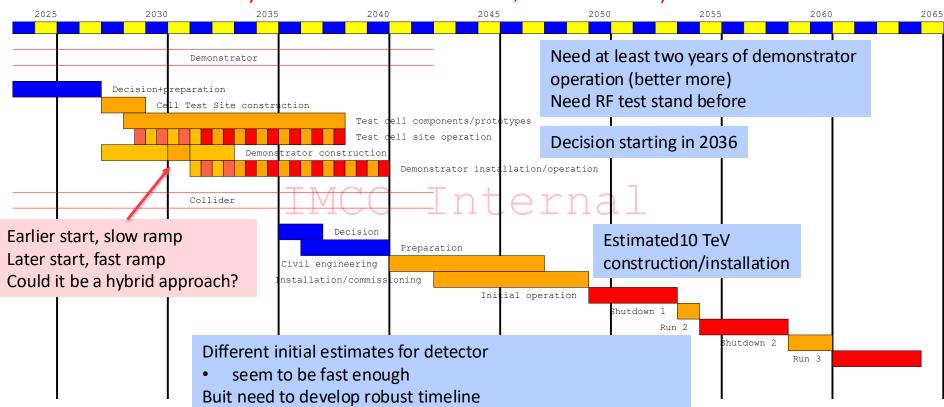

- Start at lower energy
- Current 3 TeV, design takes lower performance into account
- Splits cost, little increase in integrated cost

Luminosity staging

- Start at with full energy, but lower luminosity
- Main luminosity loss sources are arcs and interaction region
 - Can later upgrade interaction region (as in HL-LHC)

Start considering reuse of existing infrastructures

But maintain green field



Tentative Timeline (Fast-track 10 TeV)

R&D Programme

Broad R&D programme can be distributed world-wide

Muon cooling technology

- RF test stand to test cavities in magnetic field
- Muon cooling cell test infrastructure
- Demonstrator
 - At CERN, FNAL, ESS, JPARC, ...
 - Workshop in October at FNAL

Magnet technology

- HTS solenoids
- Collider ring magnets with Nb3Sn or HTS

Detector technology and design

- Can do the important physics with near-term technology
- But available time will allow to improve further and exploit AI, MI and new technologies

Many other technologies are equally important now to support that the muon collider can be done and perform

Training of young people

RF Solenoid Absorber

Opstream instrumentation and Matching

High-intensity high-energy pion source

Collimation and phase rotation

Strong synergy with HFM Roadmap and RF efforts

IMCC Plans

IMCC is a world-wide collaboration

- Provide input to all regional processes
- Accelerator R&D Roadmap has been developed with global community

We want a muon collider

- Where it will be hosted will be in the hands of funding agencies
- One lesson to take from ILC

Medium-term plans:

- For the **ESPPU (March 2025)**, will deliver planned reports to ensure support in Europe
- Will provide report to fulfill EU contract (February 2027)
- Will provide the required input to the **US process (2027?),** recommended by P5 (Reference Design?)
- Will provide input to any other processes

ESPPU Input

Strategy Secretariat

Karl Jakobs (Strategy Secretary) Hugh Montgomery (SPC Chair) Dave Newbold (LDG Chair) Paris Sphicas (ECFA Chair)

Preparatory Group

Prepares Briefing Book
Two members from the Americas

European Strategy Group

Represents member states, large laboratories, CERN management and invitees, e.g. Prof. Michael Tuts for the US

Find more at: https://europeanstrategyupdate.web.cern.ch/welcome

IMCC Report timeline

- End of October 2024: Report ready for content editing
- End of December 2024: Draft ready for collaboration and the IAC
- End of January 2025: Report ready for copy editing (language)
- End of February 2025: Start of signature process
- End of March 2025: Report ready

Formed editorial teams

- Regular meetings
- · Active role in writing
 - And pushing the other authors

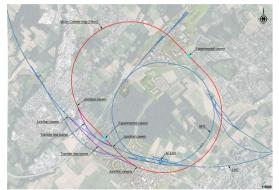
Plan for ESPPU

March 2025 deliver promised ESPPU report containing

- **Assessment**, including tentative cost and power consumption scale
- **R&D plan**, including scenarios and timelines
 - The muon cooling technology and test facility is critical for this
- Implementation considerations

In Assessment:

Present green field designs and technologies


- International collaboration
- Parameters, lattice designs, component designs, beam dynamics, cost, ...

In Implementation Considerations:

Civil engineering studies/considerations

- for CERN and if possible for FNAL
- Provide parameter tables for these implementations, scaled from green field
 - Do not have resources/time to redo detailed lattice designs for ESPPU

Schedule (strongly linked to R&D Plan)

R&D Plan and Schedule

Will submit the R&D plan to ESPPU and later other funding agencies

- Allows to maintain momentum during and after the process
- Aims at 5 and 10 years
- Demonstrator programme is a key part of the plan, need to consider sites (R. Losito et al. for CERN, D. Stratakis et al. for FNAL, others welcome)

A common plan agreed with the US and other regions

Depending on funding agencies we will share the work

Defining the scope of the R&D is critical

- Need to have realistic scope, address what is important, but do not overcommit
- Each work area proposes scope for that field, followed by arbitration on a higher level
- Identify the required resources and potential distribution of work
 - Based on the estimates of the different work areas

Critical to agree on common technically limited timeline

- Implementation in the different regions may
- E.g. political developments, budgets, other projects, strategy decisions, ...

Conclusion

Muon collider has a compelling physics case

R&D progress is increasing confidence that the collider is a unique, sustainable path to the future

Now started integrating the US at eye level

Urgent key issues is preparation of ESPPU

Need your help now

Then preparation of US process

Other processes that need input?

Many thanks to the collaboration for all the work

To join contact muon.collider.secretariat@cern.ch

Reserve

Recent Results: Interim Report

CERN-2023-XXX

IAC regular members:

Ursula Bassler (IN2P3, interim Chair)

Mauro Mezzetto (INFN)

Hongwei Zhao (Inst. of Modern Physics, IMP)

Akira Yamamoto (KEK)

Maurizio Vretenar (CERN)

Stewart Boogert (Cockcroft)

Sarah Demers (Yale)

Giorgio Apollinari (FNAL)

Experts for this review

Marica Biagini (INFN)

Luis Tabarez (CIEMAT)

Giovanni Bisoffi (INFN)

Jenny List (DESY)

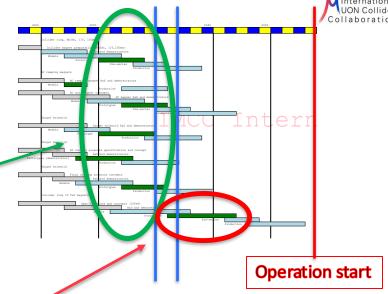
Halina Abramowicz (Tel Aviv)

Lyn Evans (CERN)

The IAC reviewed the Interim Report and prepared an excellent report on their findings

7.8	Vacuum System
7.9	Instrumentation
7.10	Radiation Protection
7.11	Civil Engineering
7.12	Movers
7.13	Infrastructure
7.14	General Safety Considerations
8	Synergies
8.1	Technologies
8.2	Technology Applications
8.3	Facilities
8.4	Synergies - summary
9	Development of the R&D Programme
9.1	Demonstrator
9.2	RF Test Stand
9.3	Magnet Test Facility
9.4	Other Test Infrastructure required (HiRadMat,)
10	Implementation Considerations 148
10.1	Timeline Considerations 148
10.2	Site Considerations 151
10.3	Costing and Power Consumption Considerations

Magnet Roadmap


Assume: Need prototype of magnets by decision process

Consensus of experts (review panel):

- Anticipate technology to be mature in O(15 years):
 - HTS solenoids in muon production target, 6D cooling and final cooling
 - HTS tape can be applied more easily in solenoids
 - Strong synergy with society, e.g. fusion reactors
 - Nb₃Sn 11 T magnets for collider ring (or HTS if available):
 150mm aperture, 4K
- This corresponds to 3 TeV design
- Could build 10 TeV with reduced luminosity performance
 - Can recover some but not all luminosity later

Still under discussion:

- Timescale for 10 TeV HTS/hybrid collider ring magnets
- For second stage can use HTS or hybrid collider ring magnets

2036+2037 decision process

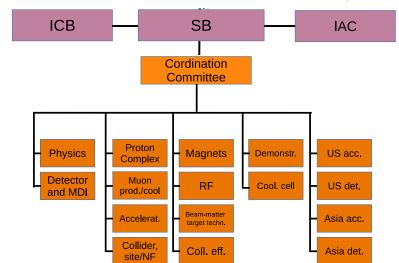
Strategy:

- HTS solenoids
- Nb₃Sn accelerator magnets
- HTS accelerator magnets

Seems technically good for any future project

IMCC

International Muon Collider Collaboration


- Can be joined by signing MoC (58 signed)
- Currently hosted at CERN, but can be modified

Resources

- Voluntary contributions of the partners
- The European Union
- Non-member contributions (70+ total partners)

Study reports to

- The members and other contributors
- CERN Council (represents European Particle Physics)
 - Via Lab Directors Group (LDG)
 - Via ESPPU
- European Union because they co-fund MuCol
- Hopefully soon DoE
 - Acutally, did already through collaboration during Snowmass

Collaboration Board (ICB), elected chair: Nadia Pastrone Steering Board (ISB), Chair Steinar Stapnes International Advisory Committee (IAC), Chair Ursula Basler

Coordination committee (CC)

- Study Leader: Daniel Schulte
- Deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers