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Muon Collider overview
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« Cooling has huge leverage on the overall machine design
« What proton power is required? What target technology to choose?

* What luminosities can be envisioned?
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Concept of ionization cooling
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« Considerations for MuC cooling:
« Beam size must be small at the absorber to reduce scattering
» Absorbers with low Z and large energy loss must be selected
« Magnetic field has to increase in strength over distance to keep cooling

« The magnetic field, makes normal conducting (NC) cavities the only option
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Muon cooling baseline

Longitudinal emittance (mm rad)
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3, 5: Large bore magnets,
from 2 T (500 mm IR), to
14 T (50 mm IR)

3, 5: Low frequency NC rf
cavities (200 - 800 MHz)
within multi-T fields

6: High-field solenoids (30-

40 T) with 25 mm IR (about
10)
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Design & simulation studies for cooling

« During the MAP-era a complete design of a Muon Collider cooling
system was developed; further improved by the IMCC

« Simulation findings look very promising but more R&D is needed in
order to benchmark some of the assumptions
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Principle verification

* Physics of ionization cooling has been demonstrated in two occasions
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NC cavities in magnetic fields

« Behavior of NC cavities in B-fields (up to 3 T) was tested at Fermilab

« Two technologies have demonstrated mitigation

* Very encouraging!

J (Cu, Al, Be)

Material B-field (T) SOG (MV/m) BDP (x107%)
Cu 0 24.4+0.7 1.8+0.4
Cu 3 129+ 04 0.8 +0.2
Be 0 41.1+£2.1 1.1 £0.3
Be 3 >49.8+2.5 0.2 £+ 0.07
Be/Cu 0 439405 1.18 = 1.18
Be/Cu 3 10.1 £ 0.1 048 +£0.14

More R&D with vacuum & gas-filled rf + tests at higher B-field needed
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Integration challenges
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Motivation for a cooling demonstrator

The principle of ionization cooling has been demonstrated
As a next step it is critical to benchmark a realistic cooling lattice

« This will give us the input, knowledge, and experience to design a real,
operational cooling channel for a MuC

It will advance magnet technology since we will design, prototype
and test solenoids similar to those needed for a MuC

« Synergistic with fusion reactors and axion dark matter searches

It will advance rf cavity technology since we will design, prototype
and test NC cavities similar to those need for a MuC

« Opportunity to develop efficient klystrons that can be useful for future colliders

» Opportunity to develop technology towards very high-gradient rf cavities for
future colliders
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Muon demonstrator staging

» Detailed parameters will depend on available funding and resources

RF studies in B-fields
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Full demonstrator with beam

« Design in progress

« Muon source, target and

transport
* Beam transport )
«  Cooling channel e
« Design may be informed by
the siting options
* Investing synergies with other
applications
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C. Rogers, Phys. Sci. Forum 2023, 8(1), 37
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Site at CERN: High power option

« TT10 is the transfer line between CERN PS and SPS

« From TT10 a new beamline would be extracted via a tunnel to the
proposed Muon Collider Demonstrator Facility
80 kW beam power
« 20+ GeV with 10*3 proton pulses of a few ns

« EXxpensive option

10 kW option
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Site at CERN: Low power option

* Reuse the line of the Big European Bubble Chamber experiment
10 kW beam power

« 20+ GeV with 10713 proton pulses of a few ns

* Cheaper option

10 kW option
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Site at Fermilab: Muon Campus

« Designed to provide beam for the Muon g-2 and Mu2e experiments
« Capable to deliver 8 kW beam at 8 GeV to the Mu2e production target
* Available tunnel space to run the demonstrator without interfering with Mu2e

* Production target is similar to the MuC target

muz2e
Production Solenoid

Production Target

Excellent opportunity to
examine targets under 5T
field
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Other sites at Fermilab

« Several candidate locations are available and will be explored
 More details see Jeff Eldred talk on Friday
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Timeline

* Per P5, a targeted panel is expected to review demonstrator
facilities in the collider R&D portfolios later this decade

* In preparation for this, we need to prepare a Demonstrator conceptual design
AND a detailed study on possible US sitting locations

« US funding currently only accessible via laboratory discretionary funds and
university research programs

« EU Strategy Update approval by CERN in 2026

« Based on the outcome, the decisions of the targeted panel and the funding
scenarios (in the US and Europe) a site for a demonstrator can be selected

later

« US and IMCC should join forces & work together
« Advance in the design for the demonstrator with engineering drawings
* Proceed with the rf tests in the magnetic fields + refine rf technology

« Design and prototype needed components (magnets, rf, rf power sources)
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