Fermilab **ENERGY** Office of Science

Cooling system design

Diktys Stratakis (Fermilab) IMCC Muon Collider Demonstrator Workshop, Fermilab October 30, 2024

Muon Collider overview

- Cooling has huge leverage on the overall machine design
 - What proton power is required? What target technology to choose?

😎 Fermilab

• What luminosities can be envisioned?

Concept of ionization cooling

- Considerations for MuC cooling:
 - Beam size must be small at the absorber to reduce scattering
 - Absorbers with low Z and large energy loss must be selected
 - Magnetic field has to increase in strength over distance to keep cooling
 - The magnetic field, makes normal conducting (NC) cavities the only option

‡ Fermilab

Muon cooling baseline

3, 5: Large bore magnets, from 2 T (500 mm IR), to 14 T (50 mm IR)

3, 5: Low frequency NC rf cavities (200 - 800 MHz) within multi-T fields

6: High-field solenoids (30-40 T) with 25 mm IR (about 10)

Design & simulation studies for cooling

- During the MAP-era a complete design of a Muon Collider cooling system was developed; further improved by the IMCC
- Simulation findings look very promising but more R&D is needed in order to benchmark some of the assumptions

<mark>╞╼╎╴╞╾╎╴╞╾╎╴╞╾╎╶╞╾╎╶╞╸╎╺┥╴╞╼╎╴╞╾╎</mark>╞╸<mark>╎</mark>

10/30/24 IMCC Muon Collider Demonstrator Workshop

Principle verification

Physics of ionization cooling has been demonstrated in two occasions

10/30/24 IMCC Muon Collider Demonstrator Workshop

NC cavities in magnetic fields

- Behavior of NC cavities in B-fields (up to 3 T) was tested at Fermilab
 - Two technologies have demonstrated mitigation
 - Very encouraging!

More R&D with vacuum & gas-filled rf + tests at higher B-field needed

Integration challenges

Motivation for a cooling demonstrator

- The principle of ionization cooling has been demonstrated
- As a next step it is critical to benchmark a realistic cooling lattice
 - This will give us the input, knowledge, and experience to design a real, operational cooling channel for a MuC
- It will advance magnet technology since we will design, prototype and test solenoids similar to those needed for a MuC
 - Synergistic with fusion reactors and axion dark matter searches
- It will advance rf cavity technology since we will design, prototype and test NC cavities similar to those need for a MuC
 - Opportunity to develop efficient klystrons that can be useful for future colliders
 - Opportunity to develop technology towards very high-gradient rf cavities for future colliders

Muon demonstrator staging

• Detailed parameters will depend on available funding and resources

Full demonstrator with beam

- Design in progress
 - Muon source, target and transport
 - Beam transport
 - Cooling channel

- Design may be informed by the siting options
- Investing synergies with other ۲ applications

2 m

7.2 T 0.2 T

0.1 m

 20°

 5°

LiH

IMCC Muon Collider Demonstrator Workshop 10/30/24

Site at CERN: High power option

- TT10 is the transfer line between CERN PS and SPS
- From TT10 a new beamline would be extracted via a tunnel to the proposed Muon Collider Demonstrator Facility
 - 80 kW beam power
 - 20+ GeV with 10¹³ proton pulses of a few ns
 - Expensive option

Site at CERN: Low power option

- Reuse the line of the Big European Bubble Chamber experiment
 - 10 kW beam power
 - 20+ GeV with 10^13 proton pulses of a few ns
 - Cheaper option

TT6

Site at Fermilab: Muon Campus

- Designed to provide beam for the Muon g-2 and Mu2e experiments
 - Capable to deliver 8 kW beam at 8 GeV to the Mu2e production target
 - Available tunnel space to run the demonstrator without interfering with Mu2e
 - Production target is similar to the MuC target

mu2e Production Solenoid

Excellent opportunity to examine targets under 5 T field

Other sites at Fermilab

- Several candidate locations are available and will be explored
- More details see Jeff Eldred talk on Friday

口 Fermilab

Timeline

- Per P5, a targeted panel is expected to review demonstrator facilities in the collider R&D portfolios later this decade
 - In preparation for this, we need to prepare a Demonstrator conceptual design AND a detailed study on possible US sitting locations
 - US funding currently only accessible via laboratory discretionary funds and university research programs
- EU Strategy Update approval by CERN in 2026
 - Based on the outcome, the decisions of the targeted panel and the funding scenarios (in the US and Europe) a site for a demonstrator can be selected later
- US and IMCC should join forces & work together
 - Advance in the design for the demonstrator with engineering drawings
 - Proceed with the rf tests in the magnetic fields + refine rf technology
 - Design and prototype needed components (magnets, rf, rf power sources)

🛠 Fermilab