

Muon Cooling Demonstrator Workshop October 30, 2024 to November 1, 2024 Fermilab - Wilson Hall

Magnet R&D in Japan

Cryogen-free superconducting magnet developments (TU)
 1.3GHz (30.5T) NMR magnet developments (RIKEN)

<u>Satoshi Awaji</u>

High Field Laboratory for Superconducting Materials (HFLSM), Institute for Materials Research, Tohoku University, Sendai, JAPAN.

Special thanks to Yoshinori Yanagisawa (RIKEN) for slides of 1.3GHz-NMR project

Challenges of High field HTS magnets in the world (>20 T)														
Name	Group	Purpose	B(T) (HTS/LTS)	HTS	J _{con} (A/mm²)	Max Stress (MPa)	ID (mm)	T _{op} (K)	Winding	Impregnation	Status	Year	Insulation	Operation days
32T	IEE/CAS	User magnet	32.35 (17.35/15)	RE123	378	610	35	4.2 (LHe)	DP	Wax		2019	NI	
32T-SM	NHMFL	User magnet	32 (17/15)	RE123	193	378	40	4.2 (LHe)	DP	Dry	Open since 2021	2017	Insulated	
1.2GHz- NMR	Bruker	NMR	28.2	RE123				2.2? (LHe)			Persistent, stability <10 ppb,	2019	Insulated	
25T-CSM	Tohoku U.	User magnet	25.1 (11.1/14)	Bi2223	150	323	96	4-8	DP	Epoxy/ turn separation	Open since 2016	2016	Insulated	1100
20T-CSM	Tohoku U.	User magnet	20.1 (4.45/15.6)	Bi2223	118	212	90	4-6	DP	Epoxy/ turn separation	Open since 2013	2013	Insulated	1988
1020MHz- NMR	NIMS /RIKEN	NMR	24.2 (3.62/20.4)	Bi2223	150	194	78	1.8 (LHe)	Layer	Wax	Obtained NMR signal, Closed in 2017	2016	Insulated	End of operation
MIRAI	RIKEN	NMR magnet	23.8 (12.6/11.2)	Bi2223	225	291	78	4.2 (LHe)	Layer	Wax	1.01GHz	2019	Insulated	
MIRAI	RIKEN	NMR magnet	31.4 (14.2/17.2)	HE123/ Bi2223	723	513	17.6	4.2 (LHe)	Layer	Wax		2019	LNI	
24T RD	NIMS /RIKEN	Demo	24 (6.8/17.2)	RE123	428	408	50	4.2 (LHe)	Layer	Wax		2012	Insulated	
25T R&D NMR	U. Geneva	Demo	25 (4/21)	RE123	733	139	20	2.2	Layer	Ероху		2019		
NOUGAT	LNCMI/CEA- Saclay	Demo	325 (14.5/18(RM))	RE123	717	716	50	4.2(LHe)	DP	Dry	32.5T under 18T by resistive magnet	2019	МІ	
LBC	NHMFL	Demo	45.5 (14.4/31.1(RM))	RE123	1420	691	14	4.2 (LHe)	SP	Dry	Damaged at 45.5T	2017	NI	
28T Demo	RIKEN	Demo	27.7 (6.3/4.3/17.1)	RE123 /Bi2223	396/238		40	4.2 (LHe)	Layer	Wax	Quench and damaged at 27.7T	2016	Insulated	
30.5T	MIT	NMR	30.5 (18.8/11.7)	RE123	547		91	4.2 (LHe)	NI	Epoxy/ turn separation	NI, HTS coils damaged in test	2018	NI	
25T-CSM	Tohoku U.	User magnet	24 (10/14)	RE123	221	407	104	4-8	SP	Epoxy/ turn separation	Quench and damaged at 24T	2015	Insulated	
25T NI	/MIT	Demo	26.4	RE123	404	286	35	4.2 (LHe)	NI-SP	Dry?	NI	2016	NI	
25T	IEE/CAS	Demo	25.7 (10.7/15)	RE123	100-306	382	36	4.2 (LHe)	NI-DP	Wax	NI, Quench at 25.7T	2017	NI	
	Practica	luse	Demo	onstratio	on [Dama	aged				May have left ou	it. Apo	ologize if	SO.

Cryogen-free superconducting magnet developments and operation at HFLSM

Cryogen-free magnet developments at HFLSM, Sendai, Japan

28T-CHM (\phi32RT) \phi360-9T-CSM

- CuNbTi/Nb₃Sn strand
- 632-19T-WM (8MW)
- Double Bitter

20T-CSM(\u00f652RT): 1988 days (18 years)

- φ196-15.57T-LTS
- CuNbTi/Nb₃Sn, NbTi: 234 MPa
- φ90-4.45T-HTS
- Cu-alloy/Ag/Bi2223 (SEI HT-CA): 212 MPa

25T-CSM(\u00f652RT): >1000 days (9 years) \u00f6300-14T-LTS

- CuNb/Nb₃Sn Rutherford, NbTi: 251 MPa ϕ 96-11T-HTS
- Ni-alloy/Ag/Bi2223 (SEI HT-Nx) : 323 MPa

33T-CSM(\u00f632RT): under construction \u00f6320-14T-LTS

- CuNb/Nb₃Sn Rutherford, NbTi:270 MPa $_{\varphi96\text{--}11T\text{-}HTS}$
- REBCO (Robust coil concept)

9 years operation of 25T-CSM

Operation days per fiscal year of 25T-CSM

<u>, , , , , , , , , , , , , , , , , , , </u>	•	
Fiscal year	Days of use	2015. Failed with REBCO insert but achieved 24 6T with the
2016	31	Bi2223 (HT-Nx)
2017	194	201682010: Short aircuit botwaan the Bi2222 nanaakaa dua ta
2018	246	not enough stiffness
2019	153	- slipping Bi2223 winding & touch to the next pancake.
2020	99	$2000 \times 05 \text{ f} T with we also see east of the Di0000 is set$
2021	266	2020: 25.1 1 With replacement of the Bi2223 Insert
2022	112	improvement of con stimess
2023	34	2022: Cold leak on the He line for HTS coil after a quench
2024	125 (to Dec)	from 24 T at an earthquake.
Total	1135 days	

K. Takahashi *et al.*, IEEE TAS, 34 (2024) 4601905

Achievement of 25.1 T by new Bi2223 coil

Quench at 24.0 T in Mar. 2022 (by earthquake)

M6.1 M7.4

M7.4 earthquake @11:36 p.m. M6.1 foreshock @11:34 p.m.

K. Takahashi et al., IEEE TAS, 34 (2024) 4601905

Quench at 24.0 T in Mar. 2022 (by earthquake)

- No dissipation in the Bi2223 coil was observed.
- Normal zone propagated from the L1 coil

K. Takahashi et al., IEEE TAS, 34 (2024) 4601905

- Temperatures of all coils were less than 80 K.
- Temperatures reached the operating temperature after around 26 hours.
- → Most of stored energy was dissipated in the dump resistors.

Installation of 33T-CSM (w/o HTS insert)

2022 : The project was budgeted.

2024 March: Whole system of 33T-CSM was installed without a 19 T-REBCO insert.

10

Overview of 33T-CSM

LTS outsert

• 14 T- ϕ 320 mm layer wound impregnated coil with Rutherford Cables HTS insert

- 19 T- φ68 mm (φ32mm RT bore)
- Impregnated two REBCO tape co-wound insulation coil

Cooling system

- Conduction cooling with He circulation
- 4 x 4K-GM cryocooler for HTS coils (4 x 1.5W@4.2K)
- 1 x GM/JT cryocooler for LTS coils (9W@4.2K)
- Thermally separated LTS and HTS coils

Protection

• Passible protection with a dump resistor

Others

- < 90min ramping
- Magnetic field monitor

Large-scale prototype REBCO coil (20 stacked)

K. Takahashi et al., IEEE TAS, 33 (2023) 4601405 A. Badel et al., IEEE TAS, 33, (2023) 4601505

20-stacke	d Coil
No. of bundled tapes	2
Inner diameter (mm)	68
Outer diameter (mm)	266
Height of coil (mm)	120
No. of turns / PCs	271-294
<i>I</i> _c of pancake	121-174
<i>n</i> -value of pancake	22-27
No. of pancakes	20

Primitive design of 33T-CSM

			HTS	NS1	NS2	NS3	NT1	NT2	
	Strand Iop A		REBCO	CuNb/Nb₃Sn Cu/NbTi					
			361	879					
	Rin	mm	34	162.3	210.3	264.2	321.7	356.1	
	Rout	mm	147.2	205.5	259.4	317.1	362.1	410	
	Height	mm	324.5	537.6	571.2	632.5	632	632	
	No of PCs	-	64						
	No of layer	-		24	26	28	20	22	
	Bmax	Bmax T		13.97	10.48	8.06	6.16	5.32	
	B0	Т	19.1	3.22	3.26	2.99	1.91	2.63	
	Strand size	mm	4.1 x 0.15	φ0.8					
	No of strands		2	16	16	18	16	19	
	lc @4.2K	А		> 2192*1	> 2064*1	> 2322*1	> 6300*2	> 8550*2	
	Reinforcement		1 x 0.1 mm			-	-	-	
	Insulation thick	mm	0.06	High :).075				
	Jcon	A/mm ²	220.1	109.3	109.3	97.2	92.0	124.9	
	Jcoil	A/mm ²	154.8	71.8	69.2	61.5	55.0	72.7	
	Tcs	K	—	6.92	9.7	11.9	6.4	6.68	
	Axial stress	MPa	-51	-51	-50	-48	-38	-43	
	Hoop stress	MPa		275	251	165	82	-28	
	^{*1} 12 T, ^{*2} 5 T			88	88	80			
reinforcement			UU	88 88 88	88 88 88	ŏŏ öö			

A. Badel et al., IEEE TAS 34 (2024) 4301205 Uto: 2LPo1B-04

S. Awaji IEEE TAS 31 (2021) 4300105

2D FEM analysis in the pancake coil

- Maximum hoop strains are about 0.29% for the mid pancake and 0.21% for the top pancake.
- Screening current induced stress/strain should be considered. It is about 10% and negligible in the mid coil.

MIRAI project (Riken) Persistent mode 1.3 GHz NMR magnet

17

MIRAI project (Riken): Persistent mode 1.3 GHz NMR magnet

MIRAI project (Riken): 30 T model test coil Yu Suetomi, SuST. 34 (2021) 064003

Possible protection method for a REBCO layer-wound coil : "intra-Layer No-Insulation (LNI)" method

Y Suetomi et al., SuST, 32, 045003 (2019)

Short field delay

Self-protection

Homogeneous field decay in the axial direction during quench.

MIRAI project (Riken): 30 T model test coil Yu Suetomi, SuST. 34 (2021) 064003

30 T model test coil

Parameters	REBCO coil	Bi-2223 coil	
Conductor Type	SuperPower Inc. SCS4050	SEI, Ltd. HT-NX	
Winding	LNI	Layer-wound	
Inter-layer material	Cu+PET sheet (26 µm) -	
Impregnation	Paraffin wax	Paraffin wax	
Over-band material /	Ni-alloy tape /	Brass round wire /	
Over-band thickness	2.1 mm	0.9 mm	
Coil I.D. / O.D. (mm)	17.6 / 66.95	81.1 / 125	
Coil height (mm)	40.1	384	
Number of turns	1604 (~9 ×180)	4640 (~80×58)	
Number of joints	0	3	
lop (A)	265	5	
lop / lc	13 T 0.56	0.51	
Magnetic field (T)	9.3	4.0	
Self-inductance (mH)	47.7	450	

Center magnetic field : 13 T + 17 T = 30 T

Yu Suetomi, Fri-Mo-Or27-02 MT26 (Sep. 27. 2019)

MIRAI project (Riken): 30 T generation

Yu Suetomi, SuST. 34 (2021) 064003

Yu Suetomi, Fri-Mo-Or27-02 MT26 (Sep. 27. 2019)

21

Yu Suetomi, SuST. 34 (2021) 064003

31 T generation 🔿 REBCO coil Quench

MIRAI project (Riken): Quench at 31 T

Yu Suetomi, SuST. 34 (2021) 064003

✓No degradation

Degradations due to unbalanced electromagnetic forces as seen in the case of NI DP coils didn't occur.

 ✓ LNI-REBCO coil was protected from very high-field quench.

Yu Suetomi, Fri-Mo-Or27-02 MT26 (Sep. 27. 2019)

A quench initiation from the top of 89th layer is considered.

Yu Suetomi, Fri-Mo-Or27-02 MT26 (Sep. 27. 2019)

MIRAI project (Riken): Quench simulation

Yu Suetomi, SuST. 34 (2021) 064003

MIRAI project (Riken): effect of contact resistance

27

Summary

- High field cryogen-free superconducting magnets at Tohoku University
 - 25T-CSM is operated for 9 years as user magnet.
 - The high stress operation of with the pre-bent R&W LTS coils was demonstrated.
 - The coil stiffness is important especially for the high stress operation in the HTS coil.
 - The 33T-CSM system without HTS insert was installed in March 2024.
 - The test including the LTS coil has been confirmed successfully.
 - The "Robust coil concept" consisting a edge impregnation, two bundle co-winding REBCO tapes, all turn separation was proposed.
 - Various tests with the large-scale prototype coil was carried out without any problems.
 (First discharge, operation at various temperatures, magnetic field stability, electromagnetic tests)
- 1.3 GHz (30.5T) NMR project at Riken
 - 30T was achieved with small REBCO layer NI coil, Bi2223 insulated layer would coil and 17T LTS coils.
 - The intra Leyer NI looks good because of no inhomogeneous bypass current along the longitudinal axis.
 - The contact resistance between turns is essential for the protection but it is difficult to be control.

Thank you for your kind attention!

Discharging behavior for L1 quench

Operation current of REBCO (H1) coil is not over the *I*_c after quench.
 No dissipation appears in the REBCO coil if no local degradation exists.

Thermal runaway : Modelling for REBCO HTS Magnets

Badel 2019 SuST: DOI 10.1088/1361-6668/ab181f

Quench analysis of REBCO insert in 33T-CSM

Assumption : 50 % I_c reduction over 1.6 cm (Damaged one tape in two tapes)

Operation at 358 A -> J_{tape} = 290 A / mm²

No delay achieved with 4 mV threshold 1 s delay achieved with 2 mV threshold

Sensitive thermal runaway detection still feasible even if the local damage in one tape may take place

More detail consideration for detection is needed!

Performance of 25 T-CSM in 2015

Design concept of CuNb/Nb₃Sn strands

	25T-CSM	33T-NS-A	33T-NS-B		
Cu/Cu-Nb/non-Cu (%)	20/ <mark>30</mark> /45	20/ <mark>38</mark> /42		Improve strength	
Nb in Cu-Nb (vol%)	20	25		improve strength	
Bronze	<mark>Cu-14wt%Sn-</mark> 0.2wt%Ti	Cu- <mark>15.7wt%Sn</mark> -0.3wt%Ti		Improve non-Cu Jc	
Wire dia.(mm)					
Filament dia. (mm)	3.3	3.2			
Pre-bending strain (%)	± 0.5	± 0.5			
Heat Treatment	670 °C × 96H	670 °C × 96H	575 × 100H +670°C × 50H		
<i>I</i> _c @4.2 K, 12 T	150-160 (> 119)	≈150 (> 127)	≈ 160 (> 137)		

Sugimoto et al, IEEE TAS, 30 (2020) 6000905

High strength CuNb/Nb₃Sn strands for 33T-CSM

Stress/Strain in the coil

- The LTS coils were layer wound impregnated insulation coils.
- Hoop stress is distributed from 110 MPa to 275 MPa without bending strain.

Cooling system (HTS)

2 stage 4K GM

Initial cooling of 33T-CSM

Lessens learned from failures of REBCO high field coils ⁴² (insulated and impregnated coils)

- A risk of local degradation should be taken into account in design at the moment.
 - Two tape co-winding for current shearing in order to mitigate and reduce hotspot temperature
- ✓ Broad *IV* property in case of a local degradation and not too short time to burn-out after thermal runaway
 - \rightarrow Protection is possible if we set adequate threshold in balance voltage.
- Protection for the hot-spot related to local degradation and inhomogeneity is crucial.
 - \rightarrow Early detection of thermal runaway is one of solutions.

Excellent electromechanical properties in REBCO and Bi2223

MIRAI project (Riken): 27.6T generation by layer would coils

27.6 T generation by LTS / Bi-2223 / REBCO layer-wound coils

