Alternative Muon Cooling at J-PARC

S. Kamioka KEK, IPNS

International Muon Collider Collaboration: Demonstrator Workshop

October 31st, 2024

Table of contents

- Introduction
- Key technologies and expected performance
- Current status of muon cooling experiments
- Future prospect

Table of contents

Introduction

- Key technologies and expected performance
- Current status of muon cooling experiments
- Future prospect

The Muon cooling at J-PARC

 \checkmark Thermal μ^+ source by laser ionization of thermal muonium (μ^+e^-)

✓ Ultra-slow muon (USM)

Surface $\mu \rightarrow Mu$ formation $\rightarrow Emission$ of thermal Mu

 \rightarrow Laser ionization of Mu (USM) \rightarrow Extracted by electrostatic lens

Specification of USM

- **\checkmark** Normalized transverse RMS emittance : ~0.3 π mm mrad.
 - \times 1/1000 times smaller emittance
- ✓ Energy: 30 meV
- ✓ Polarization: ×1/2 smaller
 - Hyperfine splitting of muonium (4GHz)
- ✓ Efficiency: >10⁻³/surface μ^+
 - Depends on laser energy, Mu target and initial μ beam
- ✓ Short pulse duration. FWHM ~ 2 ns
 - Determined by laser pulse. No CW or high-rep operation.
 - Longitudinal cooling: $\Delta t=2ns \& \Delta E < 100eV$ (determined by extraction)
- ✓ Simple extraction
 - Electrostatic immersion lens for initial transport
- ✓ Positive muon only

Proposed Applications

- USM = short pulse & low energy muon source
- Applications...
 - Muon g-2/EDM experiment: 212MeV acc.
 - muSR: O(10)keV
 - Transmission muon microscope: MeV
 - (Muonium spectroscopy)
 - $\mu^+ \mu^+$ collider ???: recent one

Transmission Muon Microscope

Table of contents

- Introduction
- Key technologies and expected performance
- Current status of muon cooling experiments
- Future prospect

High efficiency muonium target

- A laser ablated aerogel target
 - Operation room temperature
 - Holes at surface to increase emission area → × 10 emission !!
- Modeling of diffusion using random walk inside a target.
 - Muonium stops near the surface is emitted to vacuum
 - Mu in the laser region/incoming muon beam: 0.3%

Resonant multi-photon ionization

- Goal: ionize more than 10% of total emitted Mu.
- \checkmark Ionization of Mu directly from 1S is very difficult = 91nm.
- Mu is excited to its higher energy state, then it is ionized.
 - Excitation process requires less laser density = efficient process
 Ionization process requires high laser intensity, but we can use longer wavelength laser for ionization from excited state = easier.

Solid state VUV light source

- Key technology is VUV light source at λ =122nm: challenging
 - Large Mu emission volume \rightarrow high power is required.
 - <u>Goal: 122nm, 100µJ, 2ns, 80GHz, 25Hz rep, spot size 2cm²</u>
- More than ~10 μ J can be produced now. World record!!
 - \Leftrightarrow 121nm laser for laser cooling of anti-H: ~ 10 nJ

Y. Oishi et al, 2023 J. Phys.: Conf. Ser. 2462 012026

Expected performance at MLF H-line

- MLF H-line: muon beamline for g-2 exp. at J-PARC
- USM: ~ 10⁵ μ⁺/s (100μJ @122nm+300mJ @355nm)
 - Efficiency: ~ 1 \times 10 $^{\text{-3}}$ / surface μ
 - Pulse duration: 2ns

Expected Emittance after acceleration

- USM: extracted by static E-field, then accelerated by a muon Linac
- Simulation emittance growth from 30meV to 212MeV
 - One of the smallest emittance μ⁺ beam is possible
 - Longitudinal emittance is also small: ~0.1 mm

Muon Linac for muon g-2 experiment. \rightarrow Under preparation. Ready by FY2029

Table of contents

- Introduction
- Key technologies and expected performance
- Current status of muon cooling experiments
- Future prospect

J-PARC MLF

- Material life science facility
- 3GeV, 1MW, 25Hz proton beam
 - 10% for muon
 - 4 muon beamlines
 - 8 experimental areas

Demonstrations of muon cooling at J-PARC

- A lot of cooling demonstration & beyond
- S-line
 - Cooling & rf-acceleration demonstration.
 - Muonium spectroscopy
- U-line: U for ultra-slow
 - For Material science w/ cooled $\mu^{\scriptscriptstyle +}$
 - USM acceleration with cyclotron
- H-line
 - Under preparation for g-2/EDM exp.
 - High intensity surface μ beam + laser + muon linac

Demonstration @ MLF S-line

- Muon cooling & RF acceleration
 - Cooling \rightarrow Extraction by E-field \rightarrow RFQ
 - 3MeV→30meV→5.7keV→100keV
- Collaborating with Mu 1S-2S spectroscopy experiment
 - 244nm pulsed laser by Okayama univ.
 - Laser for spectroscopy→Very low ionization eff (~10⁻⁵). Enough for demonstration.

World first muon acceleration !!

- Cooled muon rf-acceleration experiment during April 2024
 - Clear peak only when laser on-resonance & RFQ ON
 - TOF agrees with the expectation.
 - Intensity: $2 \times 10^{-3} \mu$ /pulse

MCP signal at the beam diagnostic line after the RFQ

Emittance evaluation

✓ Q-scan measurement for transverse emittance evaluation

- Quadrupole strength vs beam size
- ✓ Normalized rms transverse emittance
 - Horizonal: 0.85 \pm 0.25 $^{+0.22}_{-0.13}\,\pi$ mm mrad
 - Vertical: 0.32 \pm 0.03 $^{+0.05}_{-0.02}\,\pi$ mm mrad
- > 100 times reduction of normalized RMS emittance !!

Cooling demonstration @ MLF U-line

- SiO2 target + Lasers for 1S-2P-unbound in FY 2022
 - **2.5µJ** @122-nm and **7mJ** @355-nm.
 - Extracted at 30keV by E-field→ detection by a MCP: 330 USM/s
- Recent U-line: R&D towards cooled muon μSR
 - Study of low energy muon transport
 - Laser upgrade in parallel.

VUV wavelength dependence Comparison of doppler width of different temperature target

Report in the Muon Advisory Committee 2022^{3^8}

Next step: Muon cooling at H-line

✓ Preparation underway for muon g-2/EDM exp. including..

- 1. Surface μ : > 10⁸ μ /s (10⁶ μ /s at S2 area) in this FY
- 2. New laser: FY2025 \rightarrow Energy upgrade by FY2027
- 3. Accelerators: 340keV RFQ in FY2026 \rightarrow 4MeV acc.
- > Next mid-term milestone: 1000 μ^+/s , 340keV, early FY 2026
 - Beyond demonstration stage. Looking for ideas to "use" the beam.
 - Final goal: >10⁵ μ /s & 212MeV by FY 2029

Upgrade of lasers

- Lasers are essential to increase the efficiency
 - Three lasers for two ionization scheme
- 122nm: 1S→2P
 - Development of Nd:YSAG amp for 1062.78nm
 - Necessary, but worse crystal quality
 - Issue of optics degradation: evaluation of MgF₂, LiF
 - Current: >10 μ J \rightarrow Goal: 100 μ J w/ new amp & long cell
- 244nm: $1S \rightarrow 2S \rightarrow unbound$
 - 30mJ at 5Hz achieved \rightarrow Goal: 60mJ, 25Hz
 - Should be narrow linewidth \rightarrow linewidth improvement
 - Cf: laser for acc. Demonstration: 1mJ, 25Hz
- 355nm: 2P→unbound
 - Sharing the same system with 244nm laser
 - 10ns, 1.7J, 5Hz @1064nm now→ goal: 3ns, >1J, 25Hz
 - Thermal issue, common for such high energy laser

Table of contents

- Introduction
- Key technologies and expected performance
- Current status of muon cooling experiments
- Future prospect

Towards higher intensity...

- ➢ Ultra-slow muon: very low emittance !! But intensity is low (<10⁶ /s)
 ✓ Challenge is improvement of cooling eff. = cooled µ⁺/proton
- We can use $\textcircled{1}\pi$ stopped at surface of π target & $\textcircled{2}\mu^{\!+}$ stopped near the surface of Mu target
 - Even if ionization eff. & capture every surface muon are 100%, cooling efficiency could be order of 10⁻⁷/proton.

Multi-layered production target??

- We are discussing how to increase the "surface" of each target.
- > One of such proposals: Installation of many thin π /Mu targets to stop π & Mu as much as possible at the surface of one of targets?
 - Recent proposal of $\mu^+\mu^+$ or μ^+e^- collider

Just conceptual stage... Need detailed (a lot of) simulaitons

Compact version for g-2/EDM Multi target for Mu production $\rightarrow \times 5$ more USM

Cooling of μ^- ?

- Obviously, this scheme can not be used for $\mu^{\scriptscriptstyle -}$ cooling
 - No anti-muonium target...
 - Photo-ionization of muonic atom is challenging. Need dedicated super-intense X-ray facility. (I was told it is not a major issue for collider scale projects...)
- Idea towards ultra-slow negative muon is under discussion at J-PARC
- μCF: one of such ideas. Long history of proposal, but very difficult
 ~100 μ⁻/s at J-PARC ?

Summary

- Muon cooling with a high efficiency muonium target and high energy lasers at J-PARC: Ultra-slow muon (USM)
- Demonstration of ultra-slow muon generation with a laser ablated aerogel target and lasers are ongoing.
- We finally succeeded to accelerate cooled muons !!
 - Now we have the beam!!
 - Any interesting R&D?
- Development of more intense laser towards >10⁵ Hz
- New idea for more intense USM has been proposed. Interesting future plans.

