Status of muCool at PSI

Angela Papa, Paul Scherrer Institute and University of Pisa&INFN on behalf of the muCool project at PSI

International Muon Collider Collaboration: Demonstrator Workshop 30 OCT - 1 NOV FERMILAB, ILLINOIS, USA

angela.papa@psi.ch

Contents

- Current muon beam lines worldwide
- PSI future beam line developments
 - The muCool project

Muon beams worldwide

Note: See the back-up for a summary table

Muon beams worldwide associated to "present" experiments

Muon beam major characteristics

•

Up to a **few x10⁸ mu/s** (28 MeV/c)

Intensity: Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam intensities

Muon beam major characteristics

- •
- **Time structure**: "Continuous" or pulsed

Intensity: Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam intensities

Muon beam major characteristics

- •
- Time structure: "Continuous" or pulsed
- **Phase space**: High-brightness

Intensity: Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam intensities

 $\vec{Z} = (x, p_x, y, p_y, z, p_z)$

ightarrow Transforms a standard $\,\mu^{\,+}$ beam into a high-brightness low-energy $\,\mu^{\,+}$ beam

INPUT

Standard/secondary µ⁺ beam

- $\sigma = 10 \text{ mm}$
- E = 4 MeV
- Continuous

OUTPUT

ightarrow Transforms a standard $\,\mu^{\,+}$ beam into a high-brightness low-energy $\,\mu^{\,+}$ beam

muCool/tertiary µ+ beam

- **σ** < 1mm
- E < eV
- [Tagged]

BENEFICIARIES

muon experiments (µEDM, g-2...) **µSR (solid state physics)**

```
muonium (spectroscopy, gravitational interaction...)
```


- **Aim**: low energy high-brightness muon beam ٠
- - by a factor **10**¹⁰ with an efficiency of O(**10**-4)

D. Taqqu PRL 97, 194801 (2006)

Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm

$$\frac{\omega}{\nu_{col}} \mathbf{\hat{E}} \times \mathbf{\hat{B}} + \left(\frac{\omega}{\nu_{col}}\right)^2 \left(\mathbf{\hat{E}} \cdot \mathbf{\hat{B}}\right) \mathbf{\hat{B}}$$

Trajectories in E and B field

Trajectories in E and B field

Trajectories in E and B field

Working principle: Longitudinal compression [2nd Stage]

Experimental setup and results: Transverse compression [1st Stage]

<u>ک</u>

25

40 mm

- Transverse compression: **PROVED**
- Very good agreement between data and simulations

A. Antognini, AP, et al. PRL **125**, 164802 (2020)

Experimental setup and results: Transverse compression [1st Stage]

- Longitudinal compression: **PROVED** •
- Very good agreement between data and simulations

Y. Bao, AP, et al. PRL 112, 224801 (2014)

Experimental setup and results: Longitudinal compression [2nd Stage]

Experimental setup and results: Transverse + Longitudinal compression

- Simultaneously transverse and longitudinal compression: **PROVED** •
- Very good agreement between data and simulations

A. Antognini, R. Iwai, AP et al.:https://arxiv.org/pdf/2410.21162

Experimental setup and results: Transverse + Longitudinal compression

- Simultaneously transverse and longitudinal compression: **PROVED** •
- Very good agreement between data and simulations

Experimental setup and results: Transverse + Longitudinal compression

- Simultaneously transverse and longitudinal compression: **PROVED** •
- Very good agreement between data and simulations

Data [points] and MC [lines] at 8 mbar and HV = 4.16 kV for two magnetic filed values

Where we are now:

Next step: Extraction of particles in vacuum

Where we want to be:

Outlook

- A completely new concept of high-brightness muon beam is under development at PSI
 - swarm
 - O(**10**-4)

- It could pave the way for a new generation of muon based experiments and material • characterisation
 - New opportunities for future muon (particle physics) based experiments
 - New opportunities for µSR experiments
 - Synergie with Muon Collider

• It is based on a dissipative energy loss in matter (He gas) and position dependent drift of muon

• It is expected to increase the input beam phase space by a factor **10¹⁰** with an efficiency of

Thank you for your attention !!!

Muon beams worldwide summarv

Laboratory	Beam Line	DC rate (μ/sec)	Pulsed rate (μ/sec)
PSI (CH) (590 MeV, 1.3 MW)	$\mu E4, \pi E5$ HiMB at EH	$2 \div 4 \times 10^8 \ (\mu^+) \\ \mathcal{O}(10^{10}) \ (\mu^+) \ (>2018)$	
J-PARC (Japan) (3 GeV, 210 kW) (8 GeV, 56 kW)	MUSE D-Line MUSE U-Line COMET		$3 \times 10^{7} (\mu^{+}) \\ 6.4 \times 10^{7} (\mu^{+}) \\ 1 \times 10^{11} (\mu^{-}) (2020)$
FNAL (USA) (8 GeV, 25 kW)	Mu2e		$5 \times 10^{10} (\mu^-) (2020)$
TRIUMF (Canada) (500 MeV, 75 kW)	M13, M15, M20	$1.8 \div 2 \times 10^6 (\mu^+)$	
RAL-ISIS (UK) (800 MeV, 160 kW)	EC/RIKEN-RAL		$7 imes 10^4 (\mu^-) \\ 6 imes 10^5 (\mu^+)$
KEK (Tsukuba, Japan) (500 MeV, 25 kW)	Dai Omega		$4 \times 10^5 (\mu^+)(2020)$
RCNP (Osaka, Japan) (400 MeV, 400 W)	MuSIC	$ \begin{array}{l} 10^4(\mu^-) \div 10^5(\mu^+) \\ 10^7(\mu^-) \div 10^8(\mu^+) (>2018) \end{array} $	
JINR (Dubna, Russia) (660 MeV, 1.6 kW)	Phasotron	$10^{5}(\mu^{+})$	
RISP (Korea) (600 MeV, 0.6 MW)	RAON	$2 \times 10^8 (\mu^+) (> 2020)$	
CSNS (China) (1.6 6eV, 4 kW)	HEPEA	$1 \times 10^8 (\mu^+) (> 2020)$	

