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Thanks!

• Thank you to organizers for the talk invitation!

• Not a muon collider (or cooling) expert, but absolutely an 
enthusiast!

• Last Mu2e talk at MuCol workshop was 10 min, now 20 min!
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Outline

• Muon production basics

• Mu2e physics: Charged Lepton Flavor Violation

• Muon production at Mu2e

• Looking ahead to MuCol
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How we make muons
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Adapted from J. Eldred



How we make a muon beam
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BFS (Big µ-Fetching Solenoid)

Charged beam

Charge Separation
𝝁±

𝝁∓
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Muon production target wish list

Maximize 
production

Long-lived 
(in a beam)

Compact



Charged Lepton Flavor Violation
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CLFV: muon-to-electron conversion
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Challenge 1: 𝜇− from FNAL Protons
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Resonant Extraction
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Challenge 2: Ideal Mu2e conditions
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Mu2e
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Production Solenoid
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Production Target
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Simulation Driven Design
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Segmentation helps mitigate thermal shock problems
Fins and LaO help mitigate creep and temp problems
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Muon production target wish list

Maximize 
production

Long-lived 
(in a beam)

Compact
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Maximize 
production

Long-lived 
(in a beam)

Compact

PICK TWO
(state-of-the-art)

Muon production target wish list



10/31/2024 M. Hedges: IMCC Demonstrator Workshop 19

Maximize 
production

Long-lived 
(in a beam)

Compact

MINOS NT-02 target failure: radiation-induced 

swelling (FNAL)

MINOS NT-01 target 

containment water leak 

(FNAL)

Horn stripline fatigue failure 

(FNAL)

SNS target vessel 

(ORNL)

Figs adapted from F. Pellemoine
Early target failures: limited beam power

HUGE targets!
(will be worse for muon
targets in smaller volumes)



How do targets fail?
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Thermal effects Cycle fatigue Radiation Damage

Small iridium rod at CERN HiRadMat Horn stripline fatigue failure 

(FNAL)

MINOS NT-02 target failure: radiation-

induced swelling (FNAL)



How do targets fail?
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Thermal effects Cycle fatigue Radiation Damage

Small irridum rod at CERN HiRadMat Horn stripline fatigue failure 

(FNAL)

MINOS NT-02 target failure: radiation-

induced swelling (FNAL)



Radiation Damage (Non-ionizing)
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• Damage to atoms within the target
• Solids: summarized with units of  

Displacements Per Atom (DPA)
• DPA > ~1 (locally) is where effects 

become operationally noticeable
• Transmutation/Fragmentation
• Changes in

• Thermal & physical properties
• Creep & swelling
• Fracture toughness (worsening)

Worse for smaller targets!



Simulate Radiation Damage (FLUKA)

• Mu2e proton beam:
• 8 GeV (KE) protons, sigma = 1mm beam radius (gaussian beam)
• 1.4e20 Protons on Target (POT) / year in nominal operation (8 kW beam)

• Consider cylindrical target with radius = 3 mm, length = 220 mm

• How does DPA look for different target materials (at Mu2e)?
• Assume full year of running (1 replacement / yr)
• Plot x vs z heatmap of DPA / proton in central slice of y to capture peak DPA 

in beam center
• NB: These are preliminary, exploratory plots: over-interpret at your own risk!
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Slicing to find peak DPA
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Slicing to find peak DPA
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DPA / POT
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DPA / POT



Takeaways
• Mu2e: 1e20 POT per year at 8 GeV (~8 kW) will already bring 

radiation damage concerns for almost any compact target
• We are considering different designs to address this
• Mu2e will probably be the last attempt of a solid, fixed, radiatively cooled 

target (high-Z or otherwise) for muon production

• The MW era of high-power targetry will raise major challenges in 
radiation damage and radiological effects
• 1 MW beam != 1 MW-yr of operation if target failures persist

• Cooling is a major challenge, but production is too
• Don’t be surprised if production also needs a “demonstrator”
• Very few places where this can be carried out… (exp. with PIE in hot-cell)

M. Hedges: IMCC Demonstrator Workshop 2910/31/2024



10/31/2024 M. Hedges: IMCC Demonstrator Workshop 30

Kevin Lynch (FNAL TSD Dept. Head): NuFact 2024



Thanks, and Happy Halloween!
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Backup
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Titanum Zirconium Molybenum (> 99% Mo)
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BUT THE MUON YIELDS!!!!
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Source: IMCC meeting, talk on 
fluidized tungsten targets 
(2023) 
https://indico.cern.ch/event/12
50075/contributions/5348859/
attachments/2670245/4628813
/IMCC_fluidized-tungsten-
target_v1.pdf

Z

https://indico.cern.ch/event/1250075/contributions/5348859/attachments/2670245/4628813/IMCC_fluidized-tungsten-target_v1.pdf
https://indico.cern.ch/event/1250075/contributions/5348859/attachments/2670245/4628813/IMCC_fluidized-tungsten-target_v1.pdf
https://indico.cern.ch/event/1250075/contributions/5348859/attachments/2670245/4628813/IMCC_fluidized-tungsten-target_v1.pdf
https://indico.cern.ch/event/1250075/contributions/5348859/attachments/2670245/4628813/IMCC_fluidized-tungsten-target_v1.pdf
https://indico.cern.ch/event/1250075/contributions/5348859/attachments/2670245/4628813/IMCC_fluidized-tungsten-target_v1.pdf


G4Beamline yield validation
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G4Beamline yield validation
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https://pdg.lbl.gov/2024/AtomicNuclearProperties/

8 GeV protons



Takeaways

• Mu2e will probably be the last attempt of a solid, fixed, radiatively 
cooled target (high-Z or otherwise) for muon production

• Increasing target density worsens peak radiation damage faster 
than muon production increases

• Good news! Lower density targets also absorb less energy and 
(usually) run less hot

• Fewer beam studies done with mid-density targets (e.g. TZM)

• Fun fact: Inconel was the material for Tevatron antiproton source!
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Wouldn’t Inconel (Ni) melt? FNAL Pbar note 683

• Pbar group expected a small beam would cause a “molten 
channel” to form in the target and decrease antiproton yield
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https://lss.fnal.gov/archive_notes/pbarnote/fermilab-pbar-note-683.pdf



• Pbar group expected a small beam would cause a “molten 
channel” to form in the target and decrease antiproton yield
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https://lss.fnal.gov/archive_notes/pbarnote/fermilab-pbar-note-683.pdf

Can we utilize this further with two-phase (molten core) targets??

Wouldn’t Inconel (Ni) melt? FNAL Pbar note 683
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