

COMET status and plan and demonstrator at J-PARC

Satoshi MIHARA KEK/J-PARC

- COMET Introduction
- COMET schedule and plan
- Demonstrator in COMET ?
- Summary

-e conversion search at J-PARC (COMET)

- Forbidden in SM or very small $O(10^{-54})$ even if v oscillation is taken into account due to tiny neutrino mass
 - \rightarrow NO SM physics BG!

•

- Many new physics models predict the existence of μ -e conversion just below the current limit of SINDRUM II at 7x10⁻¹³ (PSI)
 - Induced by new particle(s) with flavor mixing caused by right-handed neutrino introduction

COMET staging approach to the final goal

Target Sensitivity <10⁻¹⁶ with 56 kW beam

- Extension of muon transport solenoid to cope with higher proton beam power
 - More efficient beam background suppression
 - Pions decay to muons in longer transport
- Tungsten alloy as a pion production target
- Electron spectrometer solenoid to suppress the detector counting rate
- Physics detector
 - Straw-tube tracker and LYSO calorimeter
 - Muon stopping target (Al + others) in a gradient magnetic field for the purpose of signal electron collection with a magnetic lens

- Proton transport beamline
 - Ready in FY2021
 - Beam engineering run with a thin graphite target in FY2022. Proton beam diagnostics & backward pion production (@8GeV) as well as background survey like anti-protons.
- Solenoid magnet system
 - Pion capture solenoid (PCS) has been delivered in Oct. 2024
 - Cold mass assembly (FY2020), Cryostat construction (FY2021), and final assembly (FY2022)
 - Cryogenics system to be ready in FY2022 for the engineering run
- Physics detector in preparation by the COMET collaboration toward Physics run in FY2026-2028

Magnet System in COMET Phase I

- Capture Solenoid
 - Cooled with LHe
 - 5T-3T
- Transport Solenoid
 - Cooled with LHe
 - Curved solenoid (3T) + dipole (0.07T)
- Detector Solenoid
 - Cooled with Cryocoolers
 - 1T

Delivered 30 Oct.2024

COMET Transport and Detector Solenoids

Dipole Solenoid Element coil

Flange to Flange ··· 3220 mm Inner Diameter ··· 1800 mm 3220 mm 1800 mm

Muon Beam in COMET Phase I

- Engineering run in FY2022. Confirmation of muon transport.
- CS magnet installation Oct. 2024, followed by cryogenics installation
- Phase I physics in FY 2026. 2-3 years DAQ
- "Shutdown" for Phase II upgrade (budget is not secured yet).
- Phase II physics in FY 2031 (technically driven)

	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Eng. run		\bigstar										
Facility	Magn	et constri	uction	Installatio	on & test	Bea	am PW up	ograde/Pl	hase II pr	eparation	I	
Detectors	Constru	uction	-		CR te	eșt						
Phys. run	Stand-o					Pha	se-I Phys	ics		×	Phase-I	l Physics

Demonstrator in COMET ?

- Phase I in 2026-2028
- Phase II 2-3 years after Phase I
 - Magnet construction for 2 years
 - (Budget is not secured yet)
- During magnet construction for Phase II
 - DS (1T, 3.2m long owned by Osaka Univ.)
 - Muon beam 1010 $\mu^{\text{-(+)}}/\text{sec}$
- Additional 90 degree bend to keep a longer straight section?

- High-intensity muon beam facility at J-PARC for COMET
 - 5T capture solenoid and 90 degree curved solenoid
 - 1T detector solenoid for the spectrometer in Phase I
 - Graphite target as the primary option for pion production. Tungsten target R&D in progress
 - Phase I physics DAQ in FY2026-2028 (9?), followed by Phase II magnet construction for 2-3 years.
 - Phase II physics DAQ in FY 2031 (earliest)
- Any possibility of conducting test or R&D for the demonstrator in the COMET facility?