JLab Contributions to the Muon Cooling Demonstrator

Capabilities and possible contributions by Jefferson Lab to the Muon Cooling Demonstrator

Roger Ruber on behalf of the JLab Teams

Jefferson Lab's Science and Technology Vision

Nuclear Physics at CEBAF

Vibrant nuclear physics research program at **CEBAF with optimal 34 weeks/yr** supporting ~1,900 annual users

MOLLER Project

Future CEBAF Upgrade opportunities complementary to EIC

Theory and computation supporting NP goals

Electron-Ion Collider

Partnering with BNL in the management, design, and construction of the Electron-Ion Collider Project

Leadership in EIC scientific program

Leadership of the Generic EIC– related Detector R&D Program

S&T thrusts are synergistic and mutually supportive

Computational Science & Technology

High Performance Data Facility World-leading first-of-its-kind Data-intensive scientific computing facility

Beginning HPDF activities in **partnership** with LBNL

Accelerator Science & Technology

Accelerator component production for DOE construction projects **partnering** across the National Lab complex.

Develop CEBAF upgrade concepts

R&D in accelerator, detectors and applications in nuclear imaging and medicine

JLab Accelerator Science and Technology Capabilities and Interests

Accelerator Science

- Beam dynamics
 - "dogbone" recirculating linac (RLA) concept
 - two multi-pass RLA in series to accelerate both $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$ beams from 1 to 63 GeV
- Beam instrumentation

• SRF Technology

- Material science
- Thin-film processes, Nb3Sn
- Structure design and optimization
- Cavity fabrication and testing
 - fabricated 201.25 MHz normal conducting (NCRF) copper cavity with beryllium windows
 - developed for MICE by US MUCOOL collaboration
- Cryomodule design, fabrication, and testing

• RF Technology

- High-power RF sources
- LLRF

SRF Linac

CEBAF

CASA: Center for Advanced Studies of Accelerators

23 department members: 19 accelerator physicists, 2 engineers, 2 computer scientists 3 Ph.D. students, 1 Master's student

CEBAF Operations	Accelerator R&D	EIC Design	Computational Physics	Diagnostics
 Beam planning Optics on-call Plan and execute CEBAF beam studies Accelerator physics/ experiment liaisons Collaborate in CEBAF nuclear physics experiments 	 CEBAF energy and positron upgrades FFA optics design Halbach arrays for permanent magnets Recirculating linacs (muon dogbone RLA) Energy recovery linac expertise 	 3 GeV electron linac Energy recovery linac for hadron cooling Coherent synchrotron radiation suppression Second interaction region design Dual-energy storage rings for cooling 	 Large-scale simulation for accelerator design Accelerator AI/ML for SRF linac operations JSPEC advanced beam cooling/IBS simulation Symbolic differential algebra 	 Optical diagnostics design and fabrication Synchrotron light interferometry SRF He flow/Q0 monitors Boron nitride nanotube scintillators Medical imaging
			Educatio	on and Outreach

- Old Dominion University Jefferson Lab Professorship
- Average 1.5 PhD/year since 2010
- Annually teach graduate accelerator physics at US Particle Accelerator School
- USPAS curriculum committee membership

CASA: "Dogbone" Recirculating Linac

- Traversed in both directions
- Simultaneous acceleration of both charge species
- Extend to multi-pass
 - Two multi-pass RLA in series to accelerate both μ + and μ beams from 1 to 63 GeV

Linac optics matched to both arcs for all passes simultaneously. The arrows indicate arc locations

S.A. Bogacz, Nucl. Phys. B (Proc. Suppl.) 149 (2005) 309. https://doi.org/10.1016/j.nuclphysbps.2005.05.056

S.A. Bogacz et al., PAC 2009, WE6PFP100 https://accelconf.web.cern.ch/PAC2009/papers/we6pfp100.pdf Muon Demonstrator Workshop Oct. 2024 | Roger Ruber et al.

JLab SRF – All Under One Roof

High Q & High Gradient R&D: Oxygen Impurities in Niobium

Muon Demonstrator Workshop Oct. 2024 | Roger Ruber et al.

[2] Lechner, Eric M., et al. *Journal of Applied Physics* 135.13 (2024).

High Q & High Gradient R&D: What Role Does Surface Roughness Play?

[1] Lechner, Eric M., et al. *Physical Review Accelerators and Beams* 26.10 (2023): 103101
[2] Lechner, Eric M., et al. *arXiv preprint arXiv:2409.01569* (2024).

Exploring the effect of surface roughness on Nb and Nb₃Sn and their impact on:

- Magnetic field enhancement
 - Any surface roughness contributes
- Superheating field suppression
 - Grain boundary grooves either via nitride removal during EP or thermal grooving (Nb₃Sn)

How can we optimize the surface treatment, chemical polishing, to enhance these characteristics towards their ideal values and facilitate the largest possible accelerating field?

SRF Thin-film Processes and Nb₃Sn Development

Nb₃Sn /Nb by Sn vapor diffusion

Alternate materials & S-I-S structures SRF, metamaterials, superconducting logic, qubits

Muon Demonstrator Workshop Oct. 2024 | Roger Ruber et al.

Nb/Cu via ECR & cylindrical HiPIMS SRF, qubits

SRF Science and Technology Diagnostic Capabilities

Microscopy

Quadrupole Resonator

Muon Demonstrator Workshop Oct. 2024 | Roger Ruber et al.

Cryogenic Measurements

Physical Property Measurement system Quantum Designs, Dynacool 9T

Id Boxes Testing Board – 8 samples 4-Point Probes - Spring-loaded Pins

32 sample multiplexed 4-point probe *Custom design*

3rd harmonic magnetometer Custom design

In Situ Plasma Processing at JLAB

Funding provided by SC Nuclear Physics Program through DOE most recently through SC Lab funding announcement DE-FOA-0002670

Compact SRF for Industrial & Environmental Applications

- Nb & liq. helium → Nb₃Sn & cryocooler(s)
- ↔ compact, conduction-cooled SRF for irradiation applications
- hardware studies _____
- design efforts _
- application/customer discovery

environmental ↔ industrial

Magnetron R&D for High-efficiency Low-cost CW RF Source

- High (>90%) AC to RF power efficiency
- Low (<\$2/W) capital cost
- Demonstrated injection phase lock performance
- Magic-tee power combining demonstration 4X1.2kW @ 2.45GHz at GA
- 4x75kW @ 915MHz power combining demonstration at JLab
- Smart and low-cost switching power supplies for SRF application

Jefferson Lab

A Sampling of Cavity R&D

For CEBAF

HC 5-cell 1.5 GHz C75 Cavity (CEBAF)

Beta-matched 2-cell for new injector

Positron source target design for 22GeV Ce⁺BAF

For EIC

197 MHz Crab Cavity

For Projects and R&D

Graded-beta copper cavity for compact electron accelerator

HiLumi-LHC 400 MHz RFD Crab Cavity

High-Current SRF Cavity With **On-Cell Waveguide Dampers**

1.5 GHz ERL twin-axis cavity

Muon Demonstrator Workshop Oct. 2024 | Roger Ruber et al.

951 MHz prototype

Harmonic kicker

14

Cavity Fabrication and Testing

- Extensive capabilities for fabrication, processing and testing of SRF structures
- Machining, e-beam welding, brazing, heat treatment, EP and HF chemistry, thin-film coating

Muon Demonstrator Workshop Oct. 2024 | Roger Ruber et al.

Jefferson Lab

Cryomodule Fabrication and Testing

C75-04 Final Assembly

Fabrication of a 201.25 MHz Cavity for MICE

- Fabricated 201.25 MHz normal conducting (NCRF) copper cavity
 - with beryllium windows
 - developed for MICE by US MUCOOL collaboration

First 200 MHz cavity welded and EP'd by Jlab. Assembled in clean room

R.A. Rimmer et al., PAC 2005, TPPT029 https://accelconf.web.cern.ch/p05/PAPERS/TPPT029.PDF

JLab SRF – ISO Certification

JLab Contribution Possibilities

Beam Dynamics

- Beam dynamics simulations
 - beam dynamics study of "dogbone" accelerator for muons;
 - incorporation of a single FFA arc replacing multiple standard droplet arcs.

RF Structure Technology

- NCRF cavity development for muon cooling demonstration (incl. "cold" copper);
- SRF cavity development for high current, high gradient, high Q;
 - development of alternative materials and thin films;
 - recirculation of beam-cavity interaction in SRF cryomodule analysis,
 - fast RCS beam dynamics with cavity tuning, HOM damping, and BBU effect analysis;
- Breakdown rate study, including cryo-cooling,
 - investigate copper doped silver or copper plating technique for improved cryo-cooling;
- Alternative materials to beryllium windows.

RF Power Technology

- RF high-power development;
- LLRF development;

Education

- Training the next generation scientists and engineers;

BACKUP SLIDES

Material Science, Thin-film Processes and Nb₃Sn

Surface and Particulate Analysis

- Examination using SEM with elemental analysis
- Feedback for process improvement

SRF Thin Film Capabilities

High Quality Superconducting Films for Accelerators and Synergistic Applications

enion no

region of possibl

low-temperture low-energy ion-assisted

epitaxial growth

SRF

utout to show structure

fine-grained nanocrystallin

with preferred

net deposition

and net etching

DC-MS

RF-MS HiPIMS Re-DCMS Re- HiPIMS

In development

Nb₃Sn/Cu

Nb₃Sn S-I-S

reduction of deposition by sputtering

Alternate materials & S-I-S structures

SRF, metamaterials, superconducting logic, qubits

NbTiN/AIN SIS

SRF Science and Technology Capabilities

Microscopy

Quadrupole Resonator

Muon Demonstrator Workshop Oct. 2024 | Roger Ruber et al.

Cryogenic Measurements

Physical Property Measurement system *Quantum Designs, Dynacool 9T*

Id Boxes Testing Board – 8 samples 4-Point Probes - Spring-loaded Pins

32 sample multiplexed 4-point probe *Custom design*

3rd harmonic magnetometer Custom design

SRF Scientific & Technological Ongoing Developments

- Nb/Cu Development : Q~ 4e10, 25 MV/m @ 2K
 - Energetic Condensation with ECR & HiPIMS
- Nb3Sn films on Nb, on Cu: 1st operation with beam , 4 K operation, industrial accelerators...
 - Sn vapor deposition, Magnetron sputtering and HiPIMS, CVD (at collaborator), exploratory electroplating
- Alternate superconductors & SIS Development: 4 K operation
 - Magnetron sputtering and HiPIMS
- Coating for Ancillaries Development: HiPIMS Cu coated bellows/waveguides
- Synergistic Applications : Metamaterials, Superconducting Digital Logic & Quantum Devices and Sensors

R&D Capabilities in SRF Systems' Group

Experiences and capabilities that could be useful and collaborated in muon collider acceleration, target, cooling studies at Fermi Lab

- Graded-beta copper cavity design for electron and positron sources at JLab
 - ✓ rapid and efficient acceleration of non-relativistic charged particles
 - ✓ Large radius positron capture cavity and matching solenoid design
 - $\checkmark\,$ RF, thermal and beam loading design capabilities
- Positron beam dynamics matching and capturing design with high-field solenoid and optimization analysis for beam loss and emission reductions
 - ✓ RF cavity design, power coupler, thermal, beam-cavity interaction simulation and integration to beam dynamics analysis
 - ✓ RSF/RF cavity designs including RF window designs for cooling channel and power coupling
- Recirculating of beam-cavity interaction in SRF cryomodule analysis
 - ✓ Fast RCS beam dynamics with cavity tuning, HOM damping, and BBU effect analysis

Magnetron R&D for high-efficiency CW RF sources for Industrial NP/HEP/BES accelerators

High efficiency, low cost CW type magnetron can be used for muon targetry capturing/ cooling channel demonstration experiment

- High (>90%) AC to RF power efficiency
- Low (<\$2/W) capital cost
- Demonstrated injection phase lock performance
- Magic-tee power combining demonstration 4X1.2kW @ 2.45GHz at GA
- 4×75kW @ 915MHz power combining demonstration at JLab
- Smart and low-cost switching power supplies for SRF application

- Magnetron modification with trimming magnetic field feedback
- Injection phase lock
- Anode current modulation
- Achieved S/N performance closed to the klystron used at CEBAF
- Delivering characterized magnetron heads to GA for power combining experiment

EIC Electron Storage Ring SRF Cavity Cryomodule Assembly Design

Design, prototype and fabrication niobium, copper cavity and beam line components for high current EIC collider rings

- Capabilities of SRF/RF cavity design, prototype and fabrication for high current linac, storage ring and high gradient accelerator cavities
- Design for stringent requirement of HOM damping, short-range wake minimizing for high charge high current beams
- Engineering design fundamental and HOM couplers including Beam line absorbers, bellows and tuners

Figure 1: ESR cavity string.

Table 2: Basic Parameters of the ESR Cavity Designs

R/Q (Circ. Def) (Ω)	38
Epk/Eacc	2.01
Bpk/Eacc (mT/(MV/m))	4.87
G (Ω)	307
FPC tip penetration (Qext~2E5)	9 mm
Approximate total length (gate valve to gate valve)	2.8 m

Figure 4: HOM loss power flow, 7 mm 27.6 nC bunches, 2.5 A average current, R 75mm beampipe design.