Discussion: Programme & Siting

Chris Rogers

Discussion

- General discussion of Demonstrator "programme"
- Specificities on 6D Cooling Demonstrator
- A little on siting
- Closeout

Scope – rectilinear cooling

RF Test programme, with upgradeable magnet configuration, to develop novel RF

Prototype cooling vacuum vessel to explore magnet, absorber and RF system integration

Rectilinear cooling vacuum vessel with beam

Rectilinear cooling lattice with beam

	MICE	Demonstrator
Cooling type	4D cooling	6D cooling
Absorber #	Single absorber	Many absorbers
Cooling cell	Cooling cell section	Many cooling cells
Acceleration	No reacceleration	Reacceleration
Beam	Single particle	Bunched beam
Instrumentation	HEP-style	Multiparticle-style

Has anything been forgotten?

Scope – engineering demonstrators

	Cell	Stage	Pipe	Max. B_z	Int.	β_{\perp}	D_x	On-Axis	Wedge
	Length	Length	Radius	On-Axis	B_y			Wedge Len.	Angle
	m	m	cm	Т	Tm	cm	mm	cm	deg
A-Stage 1	1.8	104.4	28	2.5	0.102	70	-60	14.5	45
A-Stage 2	1.2	106.8	16	3.7	0.147	45	-57	10.5	60
A-Stage 3	0.8	64.8	10	5.7	0.154	30	-40	15	100
A-Stage 4	0.7	86.8	8	7.2	0.186	23	-30	6.5	70
B-Stage 1	2.3	50.6	23	3.1	0.106	35	-51.8	37	110
B-Stage 2	1.8	66.6	19	3.9	0.138	30	-52.4	28	120
B-Stage 3	1.4	84.0	12.5	5.1	0.144	20	-40.6	24	115
B-Stage 4	1.2	66.0	9.5	6.6	0.163	15	-35.1	20	110
 B-Stage 5	0.8	44.0	6	9.1	0.116	10	-17.7	12.5	120
B-Stage 6	0.7	38.5	4.5	11.5	0.087	6	-10.6	11	130
B-Stage 7	0.7	28.0	3.75	13	0.088	5	-9.8	10	130
B-Stage 8	0.65	46.15	2.85	15.8	0.073	3.8	-7	7	140
B-Stage 9	0.65	33.8	2.3	16.6	0.069	3	-6.1	7.5	140
► B-Stage 10	0.63	29.61	2.0	17.2	0.069	2.7	-5.7	6.8	140

9

?

Scope – final cooling

Prototype final cooling magnet

Final cooling test including integration of cooling equipment

Rectilinear cooling lattice with beam

Final cooling cell with beam

What does it bring?

Science & Technology Facilities Council

Scope – intensity

Minimum ionising protons

- Collective effects
 - Space charge and beam loading/wakefield are well-known
 - What about wakefield in presence of absorber?
 - What about surprises?
- Absorber & heat load
 - Easy to calculate
 - Effect unknown (boiling, cavitation, ...)
 - Does it need a magnet for checks?

Do we need to demonstrate targetry/production efficiency?

6D Cooling Demonstrator

Chris Rogers

Rectilinear lattice

Configuration	B2/ B1 (%)	Focusing Strength per cell length (T^2 m)	Max Hoop Stress (MPa)	Max Tensile Radial Stress (MPa)	Axial Force on Coil#1/ Co il#2 (MN)	Net Axial Force (MN)	Total Torque (MN m)	Total Magnetic Energy Density in cell (MJ m^3)	Coil Volume (half cell) (dm^3)	Conduct or length (half cell) (km)	Coil Current Coil#1/ Coil#2
Op 1- Min Net Axial Force	14.4	24.42	387	15.3	+7 +10	+17	0.14	152.4	39.7	11.9	1035 575
Op 2- Minimum Axial Force on Coil <i>#</i> 2	14.2	24.39	288	11.9	+20.5 +6.5	+27	0.51	135.6	63.8	19.1	768 334
Op 3- Min hoop stress on Coil <i>#</i> 2	13.6	26.39	342	7.65	-12.3 +33.1	+20.8	1.25	138.0	63.4	19.0	686 720
Op 4- Min Coil Volume	13.5	26.37	417	6.08	-10.6 +25.1	14.5	1.29	125.0	58	17.4	674 847
WP8 - 2-coil 25% current reduction configuration	5.03	38.88	672 (422 with prestress)	0.14	-27 +67	50		292.1	43.31	12.2	1253

- What aspects of the lattice force HTS?
- Should we back off to a lattice that can be LTS?

Cooling performance much less important than timely implementation
Science & Technology Facilities Council

Rectilinear lattice

20 15 10

E o B -5 -10

> -15 -20

		Cell	St	age	Pipe Radius	Max. B	z Int.	β_{\perp}	D_x	On-Axis Wedge Len	Wedge Angle			c	ollab	oratio	n
		m		mgun .	cm	Т	$\begin{array}{c} S & D_y \\ & Tm \end{array}$	cm	mm	cm	deg						
	A-Stage 1	1.8	10)4.4	28	2.5	0.102	70	-60	14.5	45						
	A-Stage 2	1.2	10)6.8	16	3.7	0.147	45	-57	10.5	60						
	A-Stage 3	0.8	6	4.8	10	5.7	0.154	30	-40	15	100						
	A-Stage 4	0.7	8	6.8	8	7.2	0.186	23	-30	6.5	70						
	B-Stage 1	2.3	5	0.6	23	3.1	0.106	35	-51.8	37	110						
	B-Stage 2	1.8	6	6.6	19	3.9	0.138	30	-52.4	28	120						
	B-Stage 3	1.4	84	4.0	12.5	5.1	0.144	20	-40.6	24	115						
	B-Stage 4	1.2	6	6.0	9.5	6.6	0.163	15	-35.1	20	110						
	B-Stage 5	0.8	4	4.0	6	9.1	0.116	10	-17.7	12.5	120						
	B-Stage 6	0.7	3	8.5	4.5	11.5	0.087	6	-10.6	11	130						
		Sm.	ÊT	Ecp	Stag	re.	Cumulative										
		mm	mm	mm^3	Transmi	ission Tr	ansmission 9	70		RF Frequenc	y Num. RI	F RF Len	gth	Max. RF Gradi	ient	RF phas	se
	Start	16.96	45.53	13500			100		1 (1) 1	MHZ		cm		MV/m		deg	
	A-Stage 1	5.17	18.31	492.60	75.	2	75.2	-	A-Stage I	352	6	19		27.4		18.5	
	A-Stage 2	2.47	7.11	44.03	84.4	4	63.5		A-Stage 2	352	4	19		26.4		23.2	
	A-Stage 3	1.56	3.88	9.59	85.	6	54.3		A-Stage 3	704	5	9.5		31.5		23.7	
	A-Stage 4	1.24	1.74	2.86	91.	3	49.6		A-Stage 4	704	4	9.5		31.7		25.7	
	Bunch merge	5.13	9.99	262.5	78.	0	38.7		B-Stage 1	352	6	25		21.2		29.9	
	B-Stage 1	2.89	9.09	76.07	85.	2	33.0		B-Stage 2	352	5	22		21.7		27.2	
	B-Stage 2	1.99	6.58	26.68	89.4	4	29.4		B-Stage 3	352	4	19		24.9		29.8	
	B-Stage 3	1.27	4.05	6.73	87.:	5	25.8		B-Stage 4	352	3	22		24.3		31.3	
	B-Stage 4	0.93	3.16	2.83	89.	8	23.2		B-Stage 5	704	5	9.5		22.5		24.3	
	B-Stage 5	0.70	2.51	1.32	89.4	4	20.7		B-Stage 6	704	4	9.5		28.2		22.1	
	B-Stage 6	0.48	2.29	0.55	88.4	4	18.2		D Ctara 7	704	1	05		105		10 /	_
	Al	A2	A3	A4	L.	B1			B2	B3	B4	B5	B6	B7 B8	A	39 Л В	10
	Coils											~ /	\mathbf{i}	$-\Lambda - \Lambda$			
Room	Pine RF																
Deall	ii i ipe		-	-											V		V
	0.9	105	211.6	276.	4	363.9	11		418.9	479.9	555.4	622.3	666.2	704.8 740.4	78	5.3 819.	7

RF - windows

- Pros:
 - More voltage on beam (factor 2?)
- Cons:
 - More prone to wakefields
 - Limits aperture \rightarrow transmission issues
 - Introduces scattering
 - Demands more RF power (?)

Integration

- Cell macro structure
 - Sharing cryomodule between cells beneficial
 - What is the correct number of cells to use?
 - Alignment/tolerances/correction
 - RF average gradient
 - Space for beam instrumentation/feedthroughs
- Missing "RF" space or missing "absorber" space
- Nb: simulation of "empty" cells has not been done
 - What is the impact on e.g. RF bucket

RF Testing Sites

- RF Test stand (3 GHz)
 - INFN LASA
 - SLAC
 - DL
- RF Test stand (<~ 1 GHz)
 - CERN
 - ESS (needs more RF power)
- More than one site will likely be needed
 - (Think of ILC cavity R&D programme)

Cooling test beams

- CERN existing capability
- FNAL existing capability
- ISIS presently restricted to < 100 MeV/c
- SNS following upgrade
- ESS following upgrade
- HIAF following upgrade
- CiADS following upgrade
- JPARC/COMET existing capability ~ 50 MeV

Anything Else?

Cooling test beams

International Muon Collider Collaboration: Demonstrator Workshop

October 30, 2024 to November 1, 2024 Fermilab - Wilson Hall

US/Central timezone

OVERVIEW Surveys SCIENTIFIC PROGRAM Committees ZOOM DETAILS TIMETABLE PARTICIPANT LIST **REGISTRATION & FEES** *REGISTER HERE* Hotel & Transportation Hotel Accommodations

Survey

Feedback and Further Thoughts

Please put any feedback or further thoughts here

1. What Demonstrators do we need to convince ourselves that muon collider can be approved?

2. What Demonstrators do we need to convince the community that muon collider can be approved?

3. Of the ideas proposed at the workshop which do you believe are most promising? Are there any further things that should be explored?

Enter

1212

If only I had remembered...

17

INTERNATIONAL ADVISORY COMMITTEE

Kathleen Amm (Florida State University)

Sarah Cousineau (ORNL)

Mamad Eshraqi (ESS)

Sergo Jindariani (Fermilab)

Ryuichiro Kitano (KEK)

Roberto Losito (CERN)

Donatella Lucchesi (INFN Padova)

Emilio Nanni (SLAC)

Chris Rogers (STFC, RAL, Chair)

Daniel Schulte (CERN)

Diktys Stratakis (Fermilab)

Lucio Rossi (INFN Milan)

Akira Yamamoto (KEK)

Science & Technology Facilities Council

LOCAL ORGANIZING COMMITTEE

Thanks!

Sergo Jindiniari (Fermilab)

Diktys Stratakis (Fermilab)

Anne Ferguson (Fermilab Conference Office)

Dawn Staszak (Fermilab Conference Office)

Farha Bhimji (A/V Support)

Science & Technology Facilities Council

Speakers Participants

Safe travels!

Science & Technology Facilities Council