VD CB PNS Data Analysis Update

Jun 5, 2024

Wei

Simulated 4.7 MeV γ in a LAr Bath (200m x 200m x 200m): **Pair production**

e^+e^- total KE: 3.68MeV (fixed)

event 5								
Marley eve	ents: a	ssert in	nfo fr	om file	name			
vertex @: (0.0, 0.0, 0.0) [mm]								
pdg	name	trkId p	parId	acId	KE	selfDepo	allDepo	
1					[MeV]	[MeV]	[MeV]	
22	gamma	0	-1	0	4.70	0.00	4.70	
11	e-	1	Θ	Θ	1.60	1.60	1.60	
-11	e+	2	Θ	Θ	2.08	2.08	3.10	
22	gamma	3	2	Θ	0.51	0.10	0.51	
22	gamma	4	2	Θ	0.51	0.08	0.51	
11	e-	5	4	Θ	0.01	0.01	0.01	
11	e-	6	4	Θ	0.26	0.26	0.26	
11	e-	7	4	Θ	0.09	0.09	0.09	
11	e-	8	4	Θ	0.05	0.05	0.05	
11	e-	9	4	Θ	0.03	0.03	0.03	

1.5 1.0 0.5 y [m] 0.0 -0.5-1.0 -1.0

Very localized deposits

If happens on a XA, it should see all 4.7 MeV energy deposit E deposit time scale is <10ns

Detected photons timing in simulated 3 γ released at 10cm drift distance from XA

For each n-capture, PD signal happens within 10us -> gamma release is prompt (ps?), gamma EM deposit time scale < 10ns -> 10us is primarily driven by the LAr slow component

Based on this, define each n-cap signal has a large pd peak (>500PE) within a 10us window

Time {EventID == 100}

Time {EventID == 1}

Lardon: Single Event PD Peaks Example

Eyeball most events are like this:

Only 1-2 peaks above 3000 ADC/channel (where most useful PNS signals are expected)

C1

Lardon: CRP Data - Event level Single Hits (tracks not plotted)

Hits not associated with 2D/3D/ghost track in default charge reconstruction (Could be further tuned for PNS signal)

Event Selection/Matching

- **Implemented** (per trigger)
 - A large PD peak (total ADC >5000) on each cathode XA
 - Each large PD peak has >=1 single hits in TPC matched

 - XA center +/- 30cm in x-y, time within 140us (one drift time) of the PD peak
 - TPC single hit time: tdc_max on collection plane
 - - If not, it's possible double/multiple captures, discard for the moment as it complicates ADC/PE calculation...
 - Matched TPC single hits are excluded in subsequent matching

Pending [to be understood, not yet implemented]

- Exclude nearby hits of previously matched hits (define nearby)
- Exclude hits nearby a track
- Event size/voxel selection
- Double/multiple n-captures
- Cross check PD timing with TPC track timing using 3d tracks crossing anode

• Find pd peaks from 2 channels closest in time (min_dt), min_dt < 160ns (10 ticks) - could be tuned

• Single hits are those that are not used in tracks reconstruction (may need tuning in the future)

• Require collection Z plane hit time >= V induction plane hit time >= U induction plane hit time • Each large PD peak needs to separate from each other by at least **10us (i.e., +/-625 time ticks)**

Post TPC-matching PD Signal: total amplitude (ADC)

tpc-matched pdpeaks: 5020 tpc-matched pdpeaks: 149 C2 tpc-matched pdpeaks: 524 **C**3 tpc-matched pdpeaks: 4960

Before match

After match

All make sense, but not helpful for calibration -> need to apply voxel selection, improve matching, understand CRP + PD reco -> compare with cosmic run.

Post TPC-matching PD Signal: peak time

Before match

After match

Peak timing

Capture statistics from simulation: 1 capture/evt

	XAO: 708.5/9901	XAC
Full 20cm drift in x:	XA1: 344/9901	XA
20cm x 60cm x 60cm voxel	XA2: 311/9901	XA
	XA3: 229.5/9901	XAS

0: 18k/250k 1: 8k/250k $\mathbf{D} = \mathbf{T} = \mathbf{E} \mathbf{E} / \mathbf{D} = \mathbf{D} \mathbf{E}$

20cm x 20cm x 20cm voxel: Scale down by 9 10cm x 20cm x 20cm voxel: Scale down by 18 10cm x 10cm x 10cm voxel: Scale down by 72 2cm x 20cm x 20cm voxel: Scale down by 90 1cm x 20cm x 20cm voxel: Scale down by 180 If we want 10x10x10cm^3 voxel, would be nice if we can get 6M stats (CRP+PDS)

2:	/. 3 K/2	: 50 K				h				-
3:	5.8k/2	250k			En Me Me Sto Sto	tries ean x ean y d Dev x d Dev y	I_TZA_Xy	9901 183.6 –7.788 82.94 95.73		100
	18	14	25	17	24	36	29	35		100
	21	19		31	22	46	33	51		
	38	26 X/	A1 46	56	72	57	58	88		
	23	28	4 5	50	29	36	63	51 _		80
	20	27	35	31	28	45	38	40		
	30	35	41	50	48	65	63	60		
	33	38	44	62	50	79	82	68		
	37	30	46	55	33	57	71	79 -		60
	32	31	48	61	49	57	64	61		
	28	32	42	61	49	70	62	70		
	53	43	63	79	65	78	83	104		
	16	37	51	46	50	66	64	69 -		40
	33	34	56	40	45	56	48	75		
	36	40	57	69	64	62	56	82		
	18	27	47	36	35	57	60	58		00
	41	35	57	78	61	68	81	80		20
	28	41	61	53	41	50	84	78		
	9	10	17	19	26	26	37	31		
		1 1	1 1			.	1 1			0
	150		2	00		250		30)0	U
								∠ (cm)		
	Э									

Capture statistics from simulation: 1 capture/evt

	XA0: 708.5/9901	XA
Full 20cm drift in x:	XA1: 344/9901	XA
20cm x 60cm x 60cm voxel	XA2: 311/9901	XA
	XA3: 229.5/9901	XA

DATA: 5k tpc-matched pd peaks from ~50k events

Roughly match Sim stats

0: 18k/250k 1: 8k/250k 2: 7.5k/250k 13: 5.8k/250k

20cm x 20cm x 20cm voxel: Scale down by 9 10cm x 20cm x 20cm voxel: Scale down by 18 10cm x 10cm x 10cm voxel: Scale down by 72 2cm x 20cm x 20cm voxel: Scale down by 90 1cm x 20cm x 20cm voxel: Scale down by 180 If we want 10x10x10cm^3 voxel, would be nice if we can get 6M stats (CRP+PDS)

