
Jennifer Ngadiuba

FermiFusion Workshop: Uniting Minds for Scientific Advancement
6 August 2024

Artificial Intelligence & Machine Learning at Fermilab



Jennifer Ngadiuba | AI & ML @ Fermilab08/06/24

Probing the fundamental structure of 
nature requires complex experimental 
devices, large infrastructures and big 
collaborations.

Big Science = Big Data
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The Large Hadron  
Collider

LIGO/VIRGO  
interferometers

Vera C. Rubin Observatory

The DUNE neutrino experiment
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• Increasingly complex data both in volume and  
dimensionality

• Increasing need for efficient and accurate data  
processing pipelines

• Challenge in simulating expectations for what  
experiments may observe

• But also need for innovative data & discovery 
driven physics analyses approaches

Big Science = Big Data
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https://a3d3.ai/

Sloan Digital Sky  
Survey

Interactions in LArTPC A LHC collision
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• In this era of science Artificial Intelligence can accelerate time to discovery
– efficient analysis of large amounts of highly-dimensional data to find subtle patterns

• With such capability it will allow us:

– enhance control and operations of detectors  
and accelerators

– automate online and offline experimental  
workflows

– save and maximize potentially lost data

– accelerate detector R&D

– test hypotheses significantly faster

The role of AI in HEP
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Dedicated part of Snowmass 
computational frontier

From Snowmass summary:

https://arxiv.org/abs/2209.07559
https://arxiv.org/abs/2209.07559
https://www.slac.stanford.edu/econf/C210711/reports/Summary.pdf
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• Machine Learning is used in particle physics since the ‘80s
– Shallow networks back then, mostly BDTs since ~ 2004 (e.g., Higgs boson discovery)

AI in HEP
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Higgs → photons
Phys. Lett. B 805 (2020) 135425

Higgs → bottom quarks
JHEP 12 (2020) 085

Measurement of neutrino  
oscillation parameters @ NovA
Phys. Rev. Lett. 118, 231801 (2017)

https://www.sciencedirect.com/science/article/pii/S037026932030229X?via=ihub
https://link.springer.com/article/10.1007/JHEP12(2020)085
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.231801
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The AI revolution
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• Machine Learning is used in particle physics since the ‘80s
– Shallow networks back then, mostly BDTs since ~ 2004 (e.g., Higgs boson discovery)

• Over the last decade a rapid  
progress guided by technological  
breakthrough led to a revolution  
in this area

– this is the era of Deep Learning

Machine learning
in

particle physics
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https://iml-wg.github.io/HEPML-LivingReview/
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• Cross directorate: CSAID and Emerging Technologies Directorate

AI Project Office 
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AI Project Office

Nhan Tran, head, CSAID
Burt Holzman, deputy head, CSAID

Farah Fahim, ETD
Tia Miceli, AD

Brian Nord, CSAID
Gabriel Perdue, ETD
Tingjun Yang, PPD 

Jennifer Ngadiuba, PPD

https://computing.fnal.gov/artificial-intelligence/
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• Accelerate HEP research with the goal of solving the mysteries of matter, energy, 
space and time

• Developing strategic capabilities within the (inter)national AI ecosystem

– AI to advance lab scientific mission, and where Fermilab can advance AI research 

• Building community around cross-cutting problems, tools, and educational 
opportunities

– By keeping a big-picture view of AI research and applications in and outside HEP, we 
connect teams across the lab and with teams at other labs/universities

– Develop resources for AI research — both people (e.g. AI associate program) and 
hardware (e.g. GPU access) 

• Sharing Fermilab AI related products with the world

AI Project Office goals
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AI for Physics  Physics for AI⇔
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• AI for physics 

• Recent Highlights

• Physics for AI

• Robust & Fast ML

• AI @ Extreme Edge 

• AI for user community 

• Computing Resources for AI training and inference

• Engage with Fermilab AI community

• Lab Wide AI meetings & Jamboree

Outline
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• LHC detectors creates more data than we can handle !

– Need to throw away 99.75% of data at first stage!

– We are interested in rare physics processes

– Trigger make real-time decision on which data to record

– Runs on FPGAs within O(100) nano seconds!

– Needs to be unbiased to maximize discovery

• Unsupervised ML technique such as Anomaly Detection 
can catch effectively the deviations from SM

– Demonstrated for offline data analysis for new physics 
searches by 3-7x !

– Triggering on “anomalousness” of collision event

AI @ Energy Frontier: LHC triggers
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Records only  0.01%  
of the data!

∼
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• AXOL1TL: triggering on “anomalousness” 

– Trained a ML model called Autoencoder 
directly on data to find “atypical” signatures 

• AXOL1TL is running on CMS L1 Trigger FPGAs 
in at LHC, collecting the data

– Performs inference in as little as 50 ns !

– First ever full unsupervised ML trigger 
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payload  
+ L1AD

AI @ Energy Frontier: LHC triggers

CMS-DP-2023-079 
CMS-DP-2024-059

Otherwise 
untriggered  

events! An otherwise 
untriggered high-
multiplicity event!

https://cds.cern.ch/record/2876546?ln=en
https://cds.cern.ch/record/2904695?ln=en
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AI @ Energy Frontier: fast simulation
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• Goal: address computational challenge of expensive simulation at (HL-)LHC experiments 

– Diffusion based models to generate calorimeter 
shower simulations

– SOTA model in CaloChallenge with a  
10-1000x speed compared to Geant4

https://calochallenge.github.io/

Many different generative models 
approaches being explored: 
- Variational Autoencoders 
- Generative Adversarial Networks 
- Normalizing Flows 
- Diffusion models

https://calochallenge.github.io/homepage/
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AI @ Cosmic Frontier: simulation-based inference
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Neural Ratio 
Estimation  
[K. Cranmer et al. 
arxiv.1506.02169]

• Goal: infer the dark energy equation-of-
state parameter w from a population of 
strong gravitational lens

– Approximate an intractable 
likelihood with a Neural Network

– Scalable for inference from O(1000) 
lenses from future surveys

– Much faster than traditional MCMC https://arxiv.org/abs/2407.17292

https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/2407.17292
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AI @ Intensity Frontier: LArTPC at DUNE
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• GNNs for Reconstruction in LArTPC 

– Computationally efficient compared to 
previous CNN approaches

– Adapted from HEPTrkX for tracking at 
LHC

– Archived 98% efficiency in filtering 
background 

https://arxiv.org/html/2403.11872v1#S1

• Supernova Detection with DUNE

• Quickly detect and point to the Supernova bursts 

– Uses FPGAs to bring power efficient 
processing to the data

– Prompt detection enables multi-messenger 
astronomy for follow up w/ other detectors
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• Machine Learning for the lattice gauge theory 

– Normalizing Flows to generate correlated lattice gauge field ensembles

– Demonstrates variance reduction in the computation of observables

– Significantly reduces statistical uncertainties while accelerating the sampling of lattice  
field configuration

AI @ Theory Frontier
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https://arxiv.org/pdf/2401.10874

Normalizing flows can model complex 
distributions by transforming a simple 
distribution through a series of learned, 
invertible functions

https://arxiv.org/pdf/2401.10874
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• Differentiate beam loss monitor signals around the ring

• Identify if main injector or recycler ring is the source

• Deployed to FPGA on a custom card

AI @ Accelerator Frontier
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Real-time Edge AI Distributed System

 Predict RF parameters 
to keep beam energy  
constant and minimize 

emittance
Predict anomalies and 
identify causing beam 

downtime

Linac Condition 
Anomaly Prediction of 

Emergency

Magnet Quench Detection

• Efficiently detect quenches in SC magnets

– Predicitve models to take preventive 
measures and decrease downtime

– Critical for enabling future energy and 
intensity frontier experiments

Linac RF Optimization
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Physics for AI : Robust & Fast ML
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Robust Machine Learning
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Regular NN training         Domain Adaptation⟶

Illustris simulations    SDSS observations⟶

Classifier

X: Inputs

Output

r(x): N-1 Layer

Critic

Z: Nuisance, Y: label

r(x), Y, [ Z, Ž ] 

Domain Adaptation

Nuisance invariant NNs w/ NuRD

Robustness in Fast AI w/ 
Knowledge distillation  

of inductive bias

Robustness for NN  
on microelectronics

Bridges difference between simulation & Obs. Data 

Robust nuisance invariant Rep. learning

Include physics knowledge 
of the system into the fast 
and efficient ML models 

protects NNs on chip 
against bit flips in high 
radiation environments 

https://arxiv.org/abs/2302.02005

https://arxiv.org/abs/2401.08777

https://arxiv.org/abs/2311.14160

https://arxiv.org/abs/2406.19522

https://arxiv.org/abs/2401.08777
https://arxiv.org/abs/2311.14160
https://arxiv.org/abs/2406.19522
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• Many experiments, particularly at Fermilab 
require custom made AI/ML methods

• Typically needs to process huge amounts of 
data in a very short time scale

– Beyond the benchmarks in industry

– Need: Real-time and efficient AI

• CPUs can not keep with these demands

– Special hardware FPGAs/ASIC provide 
huge flexibility through parallel compute

– Challenging to run ML models on these 

Fast Machine Learning

20

https://arxiv.org/pdf/2207.07958
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2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.
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Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

Catapult

Bring ML models to hardware for real-time AI

high level synthesis for machine learning

A tool to efficiently program the FPGA hardware for Neural Networks  
with experimental constraints in mind!

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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Bring ML models to hardware for real-time AI

high level synthesis for machine learning
Sparking the interest of industry 

(e.g., Google, Volvo, Siemens, AMD, …)



• Data compression w/ Rad. hard ASICs

– First use of DL for HEP on ASICs

– Developed for use in 
CMS High Granularity CALorimeter

– Powerfull nonlinear data compression 
schemes 
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AI @ Extreme Edge

• Smart pixels: Pixel sensors w/ AI on chip

– Efficiently filter low  tracks

– Saving up to 75% of data bandwidth

– Crucial for future colliders  
e.g: Reducing beam background in 

pT

μC

• AI/ML for control and readout in quantum systems

– Edge AI to improve readout of qubits

– Denoising computations in theory calculations

– Predicting quantum circuit fidelity on noisy hardware

https://arxiv.org/abs/2406.14860
https://arxiv.org/abs/2105.01683

https://arxiv.org/abs/2406.14860
https://arxiv.org/abs/2105.01683
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• Development of open source tools helps 
democratize the (edge) AI for all of HEP 
(hls4ml, DeepBench, SONIC, Open Data …)

• Benchmarks for HEP challenges will leads to 
more AI/ML solutions and broader engagement 

– Fast ML Science benchmarks takes a 
step in this direction

– Tasks with well defined real-time system 
and resource constraints 

– Challenges for broader AI community w/ 
datasets and baseline models

Fast ML for Science Benchmarks
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https://arxiv.org/pdf/2207.07958
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AI for Fermilab user community
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• Platform for rapid scientific analysis with modern web and container technologies

– Equipped with industry leading GPUs for AI training and inference 

• Highly scalable, customizable computing infrastructure

– Capable of bursting up to O(100k) batch computing cores

Elastic analysis facility ecosystem
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https://eafjupyter.readthedocs.io/en/latest/index.html
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• Bi weekly lab-wide AI meetings

– Discuss the latest development in AI and  
cutting edge AI/ML projects across the lab

– Great avenue to learn and collaborate

– https://indico.fnal.gov/category/1446/

– Announcements: aimeetings@listserv.fnal.gov

• AI Jamboree 

– Highlight current AI activities at the lab

– Panel discussions and Idea incubator 

• Engage with broader AI and HEP community

AI community @ Fermilab
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https://indico.fnal.gov/category/1446/
mailto:aimeetings@listserv.fnal.gov
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Landscape of AI @Fermilab
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AI for HEP science
Computing hardware and 

infrastructure 

Operations and  
control system Real-time AI @ edge

Using Fast, Efficient , Robust and Generalizable AI approaches
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Connect with the AI project office!

Learn more at: ai.fnal.gov

Subscribe to meeting announcements: aimeetings@listserv.fnal.gov.                        

Broad view of Fermilab AI efforts
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http://ai.fnal.gov
mailto:aimeetings@listserv.fnal.gov

