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1 Coupling Coefficients Matix Construction and Recovery
We consider the following coupling modeling,
V =I+EVI+E"), (1)

where V' is the visibility matrix with coupling, V' is the visibility matrix without coupling, and Z is the
coupling coefficients matrix.
We can solve the coupling matrix by Eigen-decomposition of both V' = UANUT and V = UAUT,
and get
I+E=(UN:K)UA?)™, (2)

where K is an un-determined arbitrary unitary matrix due to degeneracy.
After we have solved the coupling matrix, the coupling-corrected visibility can be obtained as

V=(I+5)"'VI+E"H)"1 (3)

Here we want to study how the arbitrary unitary matrix K affacts the recovery of the structure of
the coupling coefficients matrix =.

We first construct a coupling coefficients matrix E with the following parameterised form:

eij(V) _ AijeQTriTUV—i-iqbij
e
with parameters A;;, 7;; and ¢;;. We set A;; = 0.16%, and sampling the phase of ¢;; from standard
normal distribution. The coupling coefficients matrix 2 constructed in this way is shown in Figure

We use the real observed calibrated and nighttime mean subtracted visibility matrix V' as an ap-
proximation of the visibility matrix without couplings, the matrix is shown in Figure 2] We ap-
ply the constructed coupling coefficients matrix = to V to obtain a visibility matrix with couplings
V' = (I + E)V(I + E"), the result is shown in Figure [3| from which we see effects induced by the
couplings samlilar to that present in the real observation data near the diagonal.

We solve the coupling coefficients matrix E according to Eq. 2] with the unknown unitary matrix
K=1,1+Eyed = (U'A’%)(UA%)_l. We show the solved Egi1veq in Figure 4l compared with the
constructed one in Figure m we see the solved Ego1veq could not resume its original structure.

We show the solved visibility matrix without coupling Voved = (I + Esotved) V' (I + E;(Olved)*l
by applying the solved coupling matrix Egojveq in Figure The coupling effects saw in Figure [3| has
largely mitigated in the soved visibility matrix as you can see, validating the effectiveness of the coupling
modeling and elimination method.
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Figure 1: The constructed coupling coefficients matrix Z. Left is its amplitude, right is its phase.

Feed number

Figure 2: The calibrated and nighttime mean subtracted visibility matrix V' as an approximation of the
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visibility matrix without couplings. Left is its real part, right is its imaginary part.
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Figure 3: Visibility matrix V' = (I + E)V (I + ET) with couplings by applying
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part, right is its imaginary part.
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Figure 4: Solved coupling coefficients matrix Egojved = (U’A/%)(UA%)_1 —I. Left is its amplitude, right
is its phase.
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Figure 5: The solved visibility matrix without coupling Voved = (I + Esolved) V' (I + E _.S()lve )~ L by
applying the solved coupling matrix Egoveq. Left is its real part, right is its imaginary part.
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