
Discussion questions and points

DUNE framework taskforce and developer workshop
June 2024

A data product is an object that can be passed by the framework to an algorithm (in any supported
language). The framework will do some amount of bookkeeping for data products.
1. Data types and language interoperability

1. Should a data product in Python look “pythonic”?
2. Or is it OK for Python algorithms to work with data types that are implemented in C++, and wrapped for

Python? E.g, can a data product type contain member function templates?
3. What happens if and when DUNE wants to add another language to the list? (Julia, Rust, ...)

2. Inventing new data product types
1. Should one be able to define a new data product type without writing C++ code?
2. Must all data product types support reading and writing from permanent storage (IO)?
3. Must all data product types be representable in all languages?

3. Data product types and IO support
1. Can you read part of a data product from a file, without reading the entire data product?
2. If so, how fine-grained is the reading access?

Nature of data products: what are the features of their types?

June 2024 DUNE framework workshop1

• Differences between tabular and object-oriented data
1. art uses ROOT storage in an object-oriented way (row-wise vs. columnar)

2. art can give you all the vertices of a single event

3. art cannot give you all the z coordinates of the vertices in the input file at one time

4. Do you require the ability to do 3 in the framework program or directly on the ROOT file with no extra
framework or library support?

• Do you have use cases for HDF5 other than reading DAQ files?

• When do you hope to use Python in a framework context?

• What kind of dependencies are allowable for a Python algorithm?

Persistency

June 2024 DUNE framework workshop2

• A failure is an event from which the framework cannot recover (e.g. segmentation violation,
receiving a kill signal, cut power cord).

• We understand checkpointing to mean:
A process used in computing to save the state of a running application or system at a specific point in time,
enabling it to be resumed from that point in case of later failure.

 Is this what you mean?

• An error is an undesired event upon which the program can take mitigating action.
– Errors that cannot be mitigated locally are signaled via an exception.

Checkpointing, failures and errors

June 2024 DUNE framework workshop3

• Checkpoints are identified in the workflow and work performed thus far is saved.
– In event-centric frameworks, all event data are written at the end of each event.

• Run and subrun products that are accumulations of event data are problematic if a failure occurs.

– In a multi-threaded environment, multiple algorithms can execute concurrently, and the granularity of the
data processed by the algorithms can vary substantially.

• For a system that supports FPUs, FPU data could be written after each algorithm executes.

• What are the consistency guarantees required of the file being written?

• It’s an issue of making efficient use of computing resources. Where and what are you trying
to optimize?

Checkpoints in a framework

June 2024 DUNE framework workshop4

Checkpointing needs to be carefully thought out
when executing a graph of algorithms in parallel.

On the left:

• Sets of data products are aggregated into data
families (subruns and spills)

• Data product sequences are formed within a
family—e.g. 𝑎 ! corresponds to the 8 data
products labeled 𝑎 from each of 8 spills.

• Data products need not by persisted to a file—
e.g. 𝑒̃ !, where the tilde means in-memory only.

• User-defined algorithms are applied to each data
product in a sequence and are represented by
capital letters (𝐹, 𝐺, 𝐻, etc.).

Checkpointing and concurrency

June 2024 DUNE framework workshop5

𝑎 !

(𝑏)!

𝑐 !

𝑡 "

4 subruns

𝑑 ! 𝑒̃ !

𝑝 !

𝑏, 𝑝 !

8 spills

𝐹
𝐺

𝑈

𝐻 𝐽

𝐾 𝐿

• ProtoDUNE I and II data and algorithms are based on art and LArSoft, but DUNE ND and FD
will be based on the new framework and LArSoft.

• What type of backward compatibility is required?
1. Must DUNE be able to read data from existing art/ROOT files in the new framework?
2. Must DUNE be able to read current ND files with the new framework?
3. Must DUNE be able to build existing art modules for use in the new framework?
4. Must DUNE be able to build existing “art-dependent” algorithms for use in the new framework?
5. Must DUNE be able to use existing FHiCL files in the new framework?
6. Is it acceptable to have a translation program that can ingest an art/ROOT file and emit an output file

in the format expected by the new framework?

• Our expectations:
1. Some changes will be required for art-using code to enable the above.
2. Services will not be an integral part of the new framework.
3. art will not be able to read new framework files.

Backwards compatibility wrt. art

June 2024 DUNE framework workshop6

Back-up slides

June 2024 DUNE framework workshop7

Data product
An object of data the framework can provide as an input to a user-defined algorithm, or that can be
produced as an output of an algorithm.

Data (product) set
A mathematical set of data products that is identifiable by the framework and used to determine which data
products serve as inputs to an algorithm.

Data family
A category of collection of data sets (e.g.):

– examples in art: run, event, and subrun
– other examples: calibration interval, geometry/alignment interval, APA, trigger primitive, beam spill

Data family hierarchy
A hierarchy of data families (e.g. run ⊃ subrun ⊃ event)

Data model
A set of mechanisms enabling the definition, creation, identification, and organization of data products, as
well as the relationships among them. The data model also specifies the mechanism for reading and
writing persistable data products.

Definitions

6/27/24 Developers' perspective8

Definitions (in pictures)

6/27/24 Developers' perspective9

𝐸#
GoodTracks
GoodHits

𝐸$
GoodTracks
GoodHits

𝐸%
GoodTracks
GoodHits

𝐸"
GoodTracks
GoodHits

𝐸&
GoodTracks
GoodHits

𝐸'
GoodTracks
GoodHits

𝐸(
GoodTracks
GoodHits

𝐸!
GoodTracks
GoodHits

𝑆# 𝑆$ 𝑆% 𝑆"

𝑅# 𝑅$ 𝐶#
CalibOffset

𝐶$
CalibOffset

𝐶%
CalibOffset

𝑱

From services discussion on April 26

Definitions (in pictures)

6/27/24 Developers' perspective10

𝐸#
GoodTracks
GoodHits

𝐸$
GoodTracks
GoodHits

𝐸%
GoodTracks
GoodHits

𝐸"
GoodTracks
GoodHits

𝐸&
GoodTracks
GoodHits

𝐸'
GoodTracks
GoodHits

𝐸(
GoodTracks
GoodHits

𝐸!
GoodTracks
GoodHits

𝑆# 𝑆$ 𝑆% 𝑆"

𝑅# 𝑅$ 𝐶#
CalibOffset

𝐶$
CalibOffset

𝐶%
CalibOffset

𝑱Each entity in the red boxes is a label
corresponding to a data product.

The data product is what is
presented to an execution
of an algorithm.

From services discussion on April 26

Definitions (in pictures)

6/27/24 Developers' perspective11

𝐸#
GoodTracks
GoodHits

𝐸$
GoodTracks
GoodHits

𝐸%
GoodTracks
GoodHits

𝐸"
GoodTracks
GoodHits

𝐸&
GoodTracks
GoodHits

𝐸'
GoodTracks
GoodHits

𝐸(
GoodTracks
GoodHits

𝐸!
GoodTracks
GoodHits

𝑆# 𝑆$ 𝑆% 𝑆"

𝑅# 𝑅$ 𝐶#
CalibOffset

𝐶$
CalibOffset

𝐶%
CalibOffset

𝑱Each filled-in box represents a data set,
which can contains data products.

From services discussion on April 26

subrun family

calibration familyrun family

event family

Definitions (in pictures)

6/27/24 Developers' perspective12

𝐸#
GoodTracks
GoodHits

𝐸$
GoodTracks
GoodHits

𝐸%
GoodTracks
GoodHits

𝐸"
GoodTracks
GoodHits

𝐸&
GoodTracks
GoodHits

𝐸'
GoodTracks
GoodHits

𝐸(
GoodTracks
GoodHits

𝐸!
GoodTracks
GoodHits

𝑆# 𝑆$ 𝑆% 𝑆"

𝑅# 𝑅$ 𝐶#
CalibOffset

𝐶$
CalibOffset

𝐶%
CalibOffset

𝑱A data family is a category of collection of data sets.

From services discussion on April 26

subrun family

calibration familyrun family

event family

Definitions (in pictures)

6/27/24 Developers' perspective13

𝐸#
GoodTracks
GoodHits

𝐸$
GoodTracks
GoodHits

𝐸%
GoodTracks
GoodHits

𝐸"
GoodTracks
GoodHits

𝐸&
GoodTracks
GoodHits

𝐸'
GoodTracks
GoodHits

𝐸(
GoodTracks
GoodHits

𝐸!
GoodTracks
GoodHits

𝑆# 𝑆$ 𝑆% 𝑆"

𝑅# 𝑅$ 𝐶#
CalibOffset

𝐶$
CalibOffset

𝐶%
CalibOffset

𝑱A data family is a category of collection of data sets.

From services discussion on April 26

In art, each family is represented by a dedicated C++ type.

art::Event

art::SubRun

art::Run

subrun family

calibration familyrun family

event family

Definitions (in pictures)

6/27/24 Developers' perspective14

𝐸#
GoodTracks
GoodHits

𝐸$
GoodTracks
GoodHits

𝐸%
GoodTracks
GoodHits

𝐸"
GoodTracks
GoodHits

𝐸&
GoodTracks
GoodHits

𝐸'
GoodTracks
GoodHits

𝐸(
GoodTracks
GoodHits

𝐸!
GoodTracks
GoodHits

𝑆# 𝑆$ 𝑆% 𝑆"

𝑅# 𝑅$ 𝐶#
CalibOffset

𝐶$
CalibOffset

𝐶%
CalibOffset

𝑱A data family is a category of collection of data sets.

From services discussion on April 26

With the new framework, each family will be represented
by different instances of the same type.

family("event")

family("run")

family("subrun")

calibration familyrun family

event family

Definitions (in pictures)

6/27/24 Developers' perspective15

𝑱A data family hierarchy places an ordering on the
data families corresponding to data-set
organizations.

subrun family

From services discussion on April 26

There are different time periods of relevance for a framework job:

When are families specified?

6/27/24 Developers' perspective16

There are different time periods of relevance for a framework job:

1. Compile time
Period during which code is compiled into binary libraries,
which can be loaded during the runtime of a framework
program.

When are families specified?

6/27/24 Developers' perspective17

Family can be hard-coded
(art)

There are different time periods of relevance for a framework job:

1. Compile time
Period during which code is compiled into binary libraries,
which can be loaded during the runtime of a framework
program.

2. Configuration run time
Period during which a framework program ingests a user’s
configuration to determine what should be processed and
how. The execution engine is initialized at this stage, but no
physics data are processed.

When are families specified?

6/27/24 Developers' perspective18

Family can be configuration
parameter

Family can be hard-coded
(art)

There are different time periods of relevance for a framework job:

1. Compile time
Period during which code is compiled into binary libraries,
which can be loaded during the runtime of a framework
program.

2. Configuration run time
Period during which a framework program ingests a user’s
configuration to determine what should be processed and
how. The execution engine is initialized at this stage, but no
physics data are processed.

3. Processing run time
Period during which physics data are processed.

When are families specified?

6/27/24 Developers' perspective19

Family, in principle, can be
calculated from input data

Family can be hard-coded
(art)

Family can be configuration
parameter

There are different time periods of relevance for a framework job:

1. Compile time
Period during which code is compiled into binary libraries,
which can be loaded during the runtime of a framework
program.

2. Configuration run time
Period during which a framework program ingests a user’s
configuration to determine what should be processed and
how. The execution engine is initialized at this stage, but no
physics data are processed.

3. Processing run time
Period during which physics data are processed.

When are families specified?

6/27/24 Developers' perspective20

Family, in principle, can be
calculated from input data

Family can be hard-coded
(art)

Family can be configuration
parameter

We cannot think of use cases that require such flexibility.
Are you aware of any that do?

Although we expect the specification of data families to be static once the configuration step is
complete, we expect that the introduction to the framework of data sets within a family are
dynamic throughout the job.

art example:

art’s execution engine reacts to whatever it receives from the input source. Although art
allows only run, subrun, and event data sets, the number and contents of each data set is
defined by the input source.

art allows only the input source to specify when a data set is ready for processing.

When can data sets within a family be specified?

6/27/24 Developers' perspective21

Although we expect the specification of data families to be static once the configuration step is
complete, we expect that the introduction to the framework of data sets within a family are
dynamic throughout the job.

art example:

art’s execution engine reacts to whatever it receives from the input source. Although art
allows only run, subrun, and event data sets, the number and contents of each data set is
defined by the input source.

art allows only the input source to specify when a data set is ready for processing.

We expect that DUNE must be able to specify data sets not only by an input source but also
when processing data with regular user-defined algorithms (e.g. splitting/unfolding data for
more granular processing).

To the best of our knowledge, no existing HEP data-processing framework has this ability.

When can data sets within a family be specified?

6/27/24 Developers' perspective22

Example of dealing with adjacent data

6/27/24 Developers' perspective23

SomeOtherData process_both(SomeData old_data, SomeData data) { ... }

Example of dealing with adjacent data

6/27/24 Developers' perspective24

class MyProducer : public art::EDProducer {
public:
 void produce(art::Event& e)
 {
 auto new_data = e.getProduct<SomeData>("some_data");
 auto old_data = std::exchange(data_, new_data);
 if (old_data == SomeData::invalid()) {
 return;
 }
 auto some_other_data = process_both(old_data, data_);
 e.put(std::make_unique<SomeOtherData>(some_other_data),
 "some_other_data");
 }

private:
 SomeData data_{SomeData::invalid()};
};

SomeOtherData process_both(SomeData old_data, SomeData data) { ... }

art-like style

Example of dealing with adjacent data

6/27/24 Developers' perspective25

class MyProducer : public art::EDProducer {
public:
 void produce(art::Event& e)
 {
 auto new_data = e.getProduct<SomeData>("some_data");
 auto old_data = std::exchange(data_, new_data);
 if (old_data == SomeData::invalid()) {
 return;
 }
 auto some_other_data = process_both(old_data, data_);
 e.put(std::make_unique<SomeOtherData>(some_other_data),
 "some_other_data");
 }

private:
 SomeData data_{SomeData::invalid()};
};

SomeOtherData process_both(SomeData old_data, SomeData data) { ... }

This approach requires all data to be
presented in a time-ordered fashion.

Very difficult to achieve efficient concurrent
processing without extensive bookkeeping
from the module author/user.

art-like style

Example of dealing with adjacent data

6/27/24 Developers' perspective26

class MyProducer : public art::EDProducer {
public:
 void produce(art::Event& e)
 {
 auto new_data = e.getProduct<SomeData>("some_data");
 auto old_data = std::exchange(data_, new_data);
 if (old_data == SomeData::invalid()) {
 return;
 }
 auto some_other_data = process_both(old_data, data_);
 e.put(std::make_unique<SomeOtherData>(some_other_data),
 "some_other_data");
 }

private:
 SomeData data_{SomeData::invalid()};
};

SomeOtherData process_both(SomeData old_data, SomeData data) { ... }

art-like style

REGISTER(m)
{
 m.with(process_both)
 .transform("some_data"_in("raw"), "some_data"_in("raw"))
 .related_by(some_adjacency_criterion)
 .to("some_other_data");

}

Let the framework do the work.

The framework incurs responsibility
of invoking the algorithm concurrently.

An alternative

Example of dealing with adjacent data

6/27/24 Developers' perspective27

class MyProducer : public art::EDProducer {
public:
 void produce(art::Event& e)
 {
 auto new_data = e.getProduct<SomeData>("some_data");
 auto old_data = std::exchange(data_, new_data);
 if (old_data == SomeData::invalid()) {
 return;
 }
 auto some_other_data = process_both(old_data, data_);
 e.put(std::make_unique<SomeOtherData>(some_other_data),
 "some_other_data");
 }

private:
 SomeData data_{SomeData::invalid()};
};

SomeOtherData process_both(SomeData old_data, SomeData data) { ... }

art-like style

REGISTER(m)
{
 m.with(process_both)
 .transform("some_data"_in("raw"), "some_data"_in("raw"))
 .related_by(some_adjacency_criterion)
 .to("some_other_data");

}

Let the framework do the work.

The framework incurs responsibility
of invoking the algorithm concurrently.

An alternative

User specifies adjacency criterion used to associate the input arguments to the algorithm.

