
Portable Applications and Workflows

Early Achievements and Phase 1 Highlights

All-Hands Meeting
July 22 2024

Somebody for HEP-CCE

https://www.anl.gov/hep-cce

https://www.anl.gov/hep-cce


Recap of CCE-PAW Goals
● Goal 1 - Broaden the impact of Phase 1 PPS - 

Portable Parallelization Strategies - findings and 
software products. 
○ Turn the use cases into mini-apps for 

benchmarking of new systems and software
○ Provide cookbooks and trainings to support 

refactoring and porting of production HEP 
software using PPS 

○ Monitor technology trends to provide updated 
guidance on best practices

● Goal 2 - Investigate requirements and challenges 
to develop common solutions to support complex 
HEP workflows on HPC systems. 
○ Understand the different requirements and 

challenges of HEP experiment workflows at 
different scales.

○ Develop common workflow solutions 
leveraging existing HEP and ASCR workflow 
management tools on HPC systems. 

2

Phase I use cases and portability layers studied

Examples of HEP and ASCR workflow management tools



Early Achievements 
Selected the p2r and FastCaloSim testbeds to turn into easily deployable, 
turn-key mini-apps for the first year investigations
● p2r is investigating spack for automated building
● FCS is using containerization and developing automated CI workflows, 

consolidating our git repo, and integrating transparent RNG interfaces to 
hardware generators

Selected the DUNE Near Detector 2x2 Simulation and ATLAS Simulation 
workflows to investigate portability solutions for complex workflows
● DUNE ND 2x2 Sim is being ported from Perlmutter to Polaris
● ATLAS workflow is being worked on to run on Perlmutter

3



Mini-app: p2r
● Decided to use spack for the distribution of p2r

○ HPC friendly: no installation of spack needed; can re-use system module etc)
○ What we get from spack: automated build + install via easy python config.

● Suitable for p2r since:
○ Limited external dependencies 
○ Lightweight source code (easy clone-and-go)

4

Implementations

TBB CUDA HIP Kokkos Alpaka Std::par SYCL

NVDIA nvc++

AMD

Intel dpl

CPU OMP TBB

Goal: One (spack) package to rule them all

Green = results available
Red = no results/ unsupported
Orange = could be made available with effort

Martin Kwok

https://spack.io/


Mini-app: p2r 
● Pros: Spack recognizes different build systems

○ Make, Ninja, Autotools, CMake
● Cons: p2r does NOT have a build system

(Been using loose shell scripts for different implementation)
(Side benefit: collect all the versions/run parameters for var. implementations)

● Decided to use CMAKE as the build system
○ pros: already used in Kokkos/Alpaka

● Step (1) progress: 
○ Reorganized p2r repo for CMAKE(here)
○ Able to build simple versions(CUDA, TBB)

● Step (2) progress:
○ Set up the skeleton of the package.py (main spack config) similar to Kokkos 

(p2r have similar multi-backend structure)

5

Spack CMake p2r
(2) (1)

https://github.com/kakwok/p2r-tests/blob/spack/CMakeLists.txt


Mini-app: FastCaloSim
Containerization of app for multiple platforms
● CUDA
● Kokkos/NVIDIA
● HIP/AMD

Development of git CI pipelines for automatic build tests
● can be triggered to run on perlmutter (for NVIDIA GPUs) or exalearn (AMD)
● moved FCS repo to hep-cce github org for better integration with CI workflow 

management

Extension of HIP to exercise NVIDIA backend

Integration of architecture-independent RNG wrapper for full device transparency
● using header only interfaces developed in Phase 1 

6

Charles Leggett
Mohammad Atif

Pengfei Ding
Dhruva Kulkarni
Charles Leggett

Marco Lorenz
Pengfei Ding
Dhruva Kulkarni

Vedit Venkatesh



Pipeline - Automating Performance Comparison

7

Self-hosted runners (i.e. clusters)

SYCL

Kokkos

HIP

CUDA

x86

INTEL

AMD

NVIDIA

Build images

Postprocess

GitHub Actions UI

DB

Push images

Run FCS

Parse

Pull



Mini-app: FastCaloSim Summer Student Project

● SULI student Vedit Venkatesh, Lafayette 
College (Computer Science and Physics) 

● Tasked to help with testing and 
benchmarking the portable RNG wrapper 
integration in FastCaloSim using 
https://github.com/GKNB/test-benchmark-
OpenMP-RNG (Tianle Wang)

● First step: verify the generated RNGs 
follow the expected distributions

● Next step: verity the FCS results and 
performance comparison with the new 
RNG implementation (WIP with 
Mohammad Atif) 

8

CPU backend

AMD backend

float normal distribution,mean 1.0, sigma 1.0

NVIDIA backend

https://github.com/GKNB/test-benchmark-OpenMP-RNG
https://github.com/GKNB/test-benchmark-OpenMP-RNG


Workflows: DUNE

● Following discussions with several people 
from DUNE, and in particular presentation 
by Matt Kramer, we decided to use DUNE 
Near-Detector 2x2 LArTPC prototype 
module analysis workflow as a case study 
(ND/2x2 Workflow) 
○ Lots of pileup, opportunities for 

parallelization/GPU utilization
○ Sufficiently complex workflow, with potential 

ML components 
● First, try to replicate the workflow on 

Perlmutter
● Then, to test portability, move the 

workflow to Polaris
○ we will try Frontier next 

9

https://indico.fnal.gov/event/63020/contributions/284733/attachments/175182/237599/2024_02_14.DUNE_ND2x2Workflow.pdf
https://indico.fnal.gov/event/63020/contributions/284733/attachments/175182/237599/2024_02_14.DUNE_ND2x2Workflow.pdf


DUNE ND/2x2 Portability and Performance Analysis

10

Task Perlmutter Polaris

Genie (Step1/Step2) 0m46s/28m32s 0m36s/26m20s

edep_sim (Step1/Step2) 0m37s/25m42s 0m25s/24m1s

Hadd (Step1/Step2) 0m18s/0m18s 0m4s/0m4s

spill_build 0m34s 0m6s

edep2flat 3m00s TBD: Python venv

minerva 2m59s —-

convert2h5 0m33s —-

larnd_sim 0m17s —-

ndlar_flow 2m12s —-

flow2spera 19m56s —-

MLreco (inf/analysis) 2m01s/1m15s —-

cafmaker 0m43s —-

validation 2m43s —-

Portability Issues:

- ./install_everything.sh needs heavy modification and 
modules are not the same between two systems

- 2x2EventGeneration is not available on Polaris
- Copied over from Perlmutter

- Container images are not available in Polaris
- Pulled from Docker Hub with Singularity

- The workflow expects Perlmutter directory tree
- Used a lightweight container to replicate it

Perlmutter
Polaris

Bruno Coimbra
Ozgur Ozan Kilic



Workflows: ATLAS

● ATLAS already runs Simulation 
workflows on Perlmutter through 
PanDA+Harvester. 

● Goal is to see if we can integrate 
standard workflow tools as 
Harvester plugins to manage the 
access to HPC resources. 

● The idea is that the Harvester 
plugins will handle the 
system-specific configurations and 
access to alleviate the burden on 
the experiment workflows. 

● Candidate under investigation: 
Globus Compute (formerly FuncX). 

11

Globus 
Compute



ATLAS Workflow Status

● Set up test queue and Harvester test instance on Perlmutter
● Test PanDA pilot jobs running on Perlmutter by HEP-CCE 
● Learned to set up Globus Compute on Perlmutter to support 

both direct Python script submission and submission through 
pilots 

● Issues
○ Problem accessing ATLAS directories without ATLAS accounts 

(resolved) 
○ Have to use the collaboration account of “usatlas” to submit job due 

to a harvester-policy permission issue, which is incompatible with 
globus compute right now (might be fixed relatively easy)

○ PanDA pilot could not retrieve a job (under investigation) 

12

Doug Benjamin
Mikhail Titov
Tianle Wang



Summary and Plans

● In Year 1 of Phase 2, PAW has made concrete plans towards both goals 
(Portable Applications and Portable Workflows) 

● Initial progress has been made:
○ Development of ready-to-deploy miniapps for FastCaloSim and p2r is in progress. 
○ Identified DUNE and ATLAS workflows on HPC as initial targets for portability studies.
○ Tests on replicating these workflows have varied degrees of successes and failures. 

● We also identified several issues that need to be addressed to enable 
portable workflows:
○ HEP workflows have complicated dependencies and existing workflow management 

tools. Integrating them with new workflow managers or porting them to a different 
platform may not be easy. 

○ HEP relies heavily on cvmfs, which is not currently available on all HPC systems. 
● We need to continue to build, test and benchmark the example workflows 

before we can implement a portable solution. 
○ Based on our Year 1 findings, we will expand the number of apps/workflows in Year 2 and 

beyond

13


