
DUNE Analysis Data Format in RNTuple

Amit Bashyal, Peter Van Gemmeren
 On Behalf of HEP-CCE2/SOP
Argonne National Laboratory

 July 22, 2024

1

Deep Underground Neutrino Experiment (DUNE)

2

● Far Detector (in SD)
● 40,000-ton x 4 Liquid Argon Detector
● Will measure neutrino oscillation
● (Beam) event: ~6 GB/event
● Event Rate: ~mHz

1400+ Scientists 10 PB/year of Data to be collected

● Near Detector (in IL)
● Multiple heterogenous detectors
● Will measure neutrinos at source
● (Beam) event: ~5 MB/trigger
● Event Rate: ~Hz

Common Analysis Format Data Model

3

Representative FD neutrino event in DUNE

Representative ND neutrino event in DUNE

• Oscillation Experiments like DUNE require measuring the
neutrino events in near and far detectors to extract neutrino
oscillation parameters.

Raw Data Hit Level Data

• Detailed
information with
intricate structure

• Problem for
analyzing data
with ease and
speed

• Raw data
collected in
both near and
far detector.

Higher Level Data

• Neutrino events
recorded as
tracks, showers
and other
physics variables
reconstructed in
both detectors

CAF records the summary of neutrino events as
collection of tracks, showers and other physical
attributes of particles reconstructed in near and far
detectors.

CAF in DUNE Reconstruction Chain

4

DUNE Framework

• DUNE
Framework
(currently in
design) will
produce the
reconstructed
objects.

CAF ObjectsCAF-Maker

• Produces CAF
objects

Reconstruction chain of
2x2 Demonstrator for
DUNE

CAF-Maker produces
CAF objects as end
product

Taken from link

CAF-Ana

Users use prebuilt tools
for analysis using CAF
Objects

https://indico.fnal.gov/event/58260/contributions/259532/attachments/164186/217628/DUNE_GPU_Friendly_Data_Format.pdf

CAF Data Model in DUNE

5

StandardRecord: Top-level CAF Object

Metadata about the detectors

Beam Configuration

Generator Level Information

Reconstructed variables in ND

Reconstructed variables in FD

Common Reconstructed variables

ND-LAr

ND-GAr

ND-TMS

ND-SAND

Std::vector<Reconstructed Interaction>
method1

Std::vector<Reconstructed Interaction>
method2

Left: DUNE ND Complex
CAF Object corresponding to Near Detector
records interactions in all detectors located
in the Near Detector complex.

• StandardRecord (SR): Summary of neutrino
event

• Metadata, beam configuration related data ,
generator level data and reconstructed data

• Records higher level reconstructed variables
instead of hit-level information

• Hierarchical data model

• Member of SR that records
interactions from the detectors in
ND complex.

• Example: ND-LAr records
interactions in the liquid argon
detector of ND complex

ND-LAr

• Reconstructed interactions are recorded
as “Track” and “Shower” objects.

• “Track” and “Shower” objects record
physical attributes like position, direction,
energy deposited etc as 3D vectors,
stl:::vectors and C++ simple types.

A reconstructed interaction in a
liquid argon detector. Taken from
link

Shower

Track

https://indico.cern.ch/event/1034469/contributions/4432370/attachments/2281758/3877058/APS_DiNoto.pdf
https://indico.fnal.gov/event/23109/contributions/193265/attachments/132951/163783/DUNE_usersmtg_2020_TY.pdf

RNTuple: Storage backend of Upcoming HEP experiments
• By 2029 RNTuple will Replace TTree as the primary I/O sub-system of ROOT

• TTree has evolved to address HEP complex data needs
• Over 1 Exabyte of data stored in TTree format

• However TTree evolution predates recent overhauls in C++, modern programming
paradigms and evolving computational landscape

• TTree will be available only as legacy support (no new developments)

• RNTuple will be the new storage backend in next ROOT release (ROOT 7)
• State of the art HEP community supported storage and I/O subsystem
• Address the storage and I/O requirements of upcoming HEP experiments
• Use of modern C++ standards

• Adoption of smart pointers, better error handling mechanisms and modern C++ libraries

• Upcoming HEP experiments like DUNE will have to adopt RNTuple to stay
state-of-art ROOT ecosystem

6

RNTuple and the DUNE Experiment

7

• DUNE will start taking data by the end of this decade.
• RNTuple will replace TTree as the primary storage backend

• DUNE Data Processing Framework (currently in design) will adopt RNTuple
API

• This talk: Adoption of RNTuple in DUNE’s analysis level data (CAF)

Estimated DUNE data taking start date

TTree exists as legacy support only

CAF Data Model in DUNE and RNTuple
• Currently (Proto)DUNE supports persistency of

CAF objects in TTree in two ways:
• Directly as CAF Objects
• CAF Objects as Simple Flat Types

• DUNE must adopt RNTuple to write CAF objects
• Storage Requirement study with RNTuple backend
• Note that CMS and ATLAS report ~30-60% storage

saving with RNTuple as storage backend

• This work explores persistency of CAF
Objects in RNTuple.

8

No storage requirement from
raw data (written in HDF5)
after 2035

Projected storage requirements for DUNE
over time. Taken from LBNC 2023 (Link).
Projections do not consider RNTuple
adoption.

 After 2030s, increase in storage requirement
for DUNE from non-raw data (including CAF) that will be
written in RNTuple

https://indico.fnal.gov/event/59113/contributions/263166/attachments/165279/219550/LBNC-computing-23-3-23-v3.pdf

Persisting CAF Objects in RNTuple

9

StandardRecord

Reconstructed variables in ND (nd)
ND-LAr (ndlar)

Std::vector<Reconstructed Interaction>
method1 (dlp)

Field 1

Field 1.6
Field 1.6.1

Field 1.6.1.1

• StandardRecord Objects are written as ROOT::Experimental::RFields (analogous to ROOT::TBranch)
• Each SR object has a unique field number with SR object members persisted as “sub-fields”, “sub-sub-

fields”, …..
• Below is an example of how a persisted CAF Object is represented by RNTuple:

Reconstructed Interaction:
• track

• Start (3D vector)
• X
• Y
• Z

• End (3D vector {x,y,z})
• ….

• …..
• ….

Field 1.6.1.1.1.1
Field 1.6.1.1.1.1.1

Field 1.6.1.1.1.1.1.1
Field 1.6.1.1.1.1.1.2
Field 1.6.1.1.1.1.1.3

Field 1.6.1.1.1.1.2

Hierarchical representation of CAF object “dlp” and
its persistence in RNTuple

Figure: File size with 50,000
StandardRecord objects persisted
in TTree and RNTuple.

~30% less storage
requirement in
RNTuple compared
to TTree

Persisting CAF Objects as Flat Types in RNTuple
• Flattened CAF Objects are simple C++ type objects

or arrays
• Redesigning I/O tools (Proxy reader/writer) needs

heavy lifting
• Heavy dependence upon TTree and related APIs,

pointers, raw arrays (T[N])

Implemented Proxy writer with RNTuple support
• TTree APIs replaced by RNTupleModel APIs
• Discard raw arrays in favor of std::arrays or stl::vectors
• Modification of functions that used raw pointers to

write data
• Naming scheme adjustment to support RNTuple

• Each SR Object is decomposed into over 1300 Fields
of flattened CAF object members (arrays and non-
arrays)

10

StandardRecord (sr)

SRND (nd)

SRNDLAr (ndlar)

SRTrack (trk)

SRVector3D (start)
SRVector3D:
• (x,y,z) components

CAF object “start” flattens as:
• Field N: sr_nd_ndlar_trk_start_x
• Field N+1: sr_nd_ndlar_trk_start_y
• Field N+2: sr_nd_ndlar_trk_start_z

Hierarchical
representation
of a CAF object
“start”

Conclusions and Outlook

11

Estimated DUNE data taking start date We are here
• Below is the current situation from DUNE’s perspective

• DUNE’s Data processing Framework is currently in development which has to fully adopt
RNTuple

• This work shows that RNTuple can support DUNE’s analysis level data (CAF)
• Supports persistence and I/O of both CAF objects and flattened CAF objects with Proxy

Writers

• Deliverable as part of CCE-2 Effort for the DUNE collaboration
• Collaborate with DUNE stakeholders (CAF developers) for testing and integration into core

framework

HEP-CCE

Thank You!

12

CAF Data Model in DUNE

13

 class StandardRecord
 {
 public:
 // Metadata about the detectors
 SRDetectorMetaBranch meta;
 //the beam configuration and beam pulse info
 SRBeamBranch beam;
 //truth or generator level information
 SRTruthBranch mc;
 //Reconstructed info expected to be common to all (?) detectors
 SRCommonRecoBranch common;
 // Reconstructed info unique to the FD
 SRFDBranch fd;
 //Reconstructed info unique to the ND complex
 SRNDBranch nd;

 };

Top level CAF Object that contains the summary
of neutrino event

 class SRNDBranch
 {
 public:
 SRNDLAr lar;
 SRGAr gar;
 SRTMS tms;
 SRSAND sand;
 ...
 ...
 };

SRNDBranch contains
variables reconstructed in
various detectors of the ND
complex.

 /// ND-LAr reconstruction output
 class SRNDLAr
 {
 public:
 std::vector<SRNDLArInt> dlp;
 std::size_t ndlp = 0;
 std::vector<SRNDLArInt> pandora;
 std::size_t npandora = 0;
 ...
 ...

};

 class SRNDLArInt
 {
 public:
 std::vector<SRTrack> tracks;
 std::size_t ntracks = 0;

 std::vector<SRShower> showers;
 std::size_t nshowers = 0;
 };

SRNDLAr records
variables
reconstructed at
ND LAr Detector.

SRNDLAr records neutrino
interaction as showers and
tracks reconstructed in the
ND LAr Detector.

