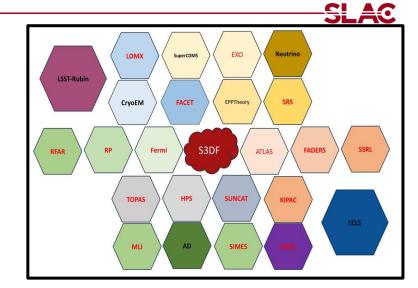
SLAC Input to HEP-CCE

HEP-CCE All Hands Meeting July 2024

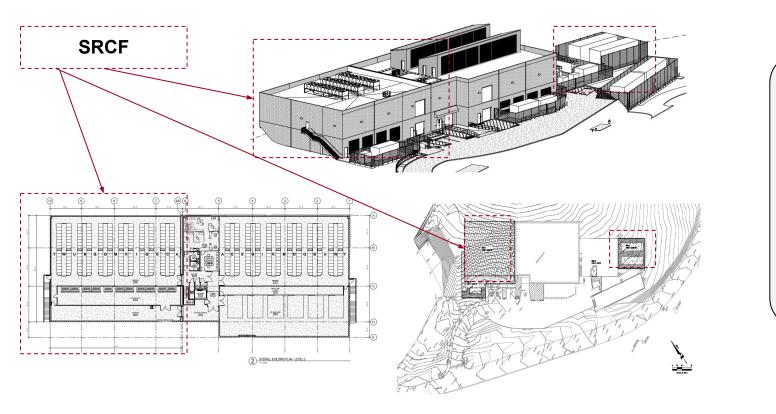

Overview

- Introduction to HEP computing at SLAC
 - SLAC Shared Science Data Facility (S3DF)
 - \circ SLAC HEP Computing
- Possible SLAC tasks within HEP-CCE

What is the SLAC Shared Science Data Facility (S3DF)?

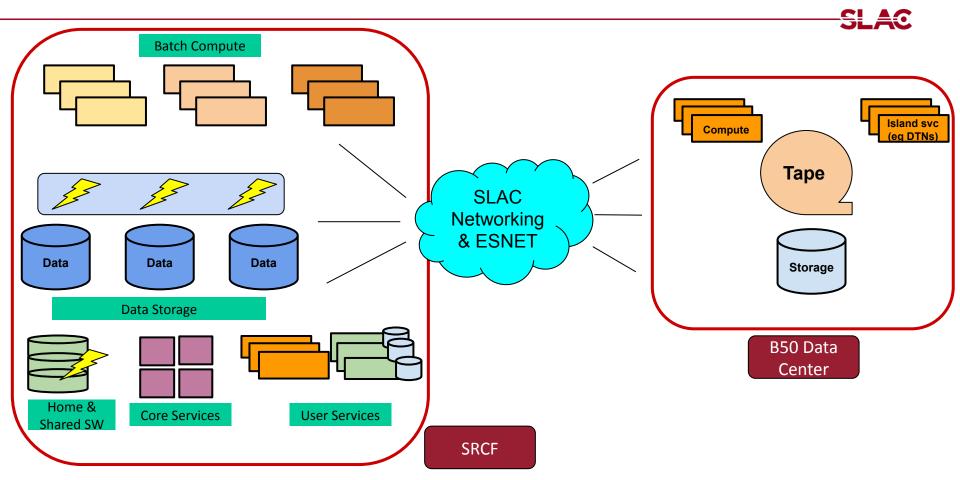
- Common shared scientific computing infrastructure to tackle the challenges of massive throughput data analytics at SLAC
- Supports several key mission areas:
 - Critical, data-heavy, scientific computing workflows for all science at SLAC - including its User Facilities (LCLS, Rubin, UED, CryoEM, SSRL)
 - Baseline scientific computing resources for ALL SLAC users
- This infrastructure offers:
 - "Ever-green" computing and storage platforms (disk and archival storage)
 - Broad set of capabilities and services to support scientific computing
 - Interactive access
 - Batch computing
 - Service Compute
 - User-defined Kubernetes-based services for databases, web-based portals, data management, etc.
 - Jupyter notebook portals

Key use case characteristics

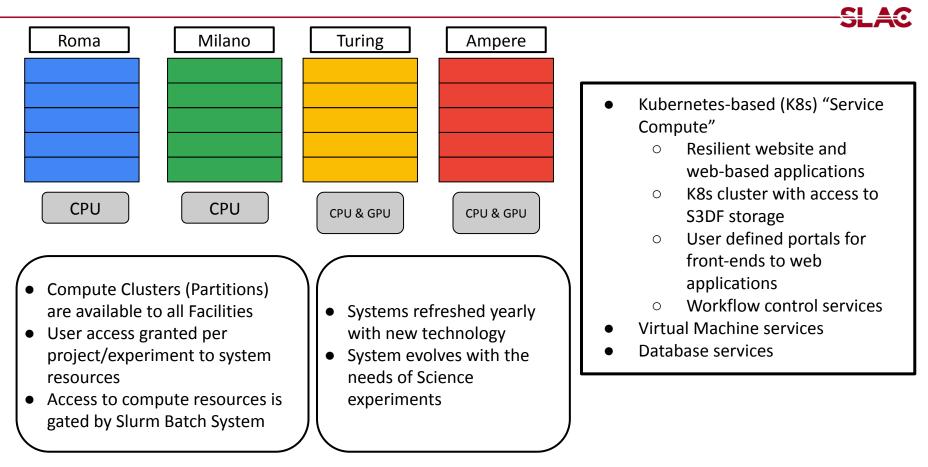

- High-throughput data
 production
- Large datasets and complex data management workflows
- High-throughput computing
- Data-intensive computing

Key S3DF capabilities

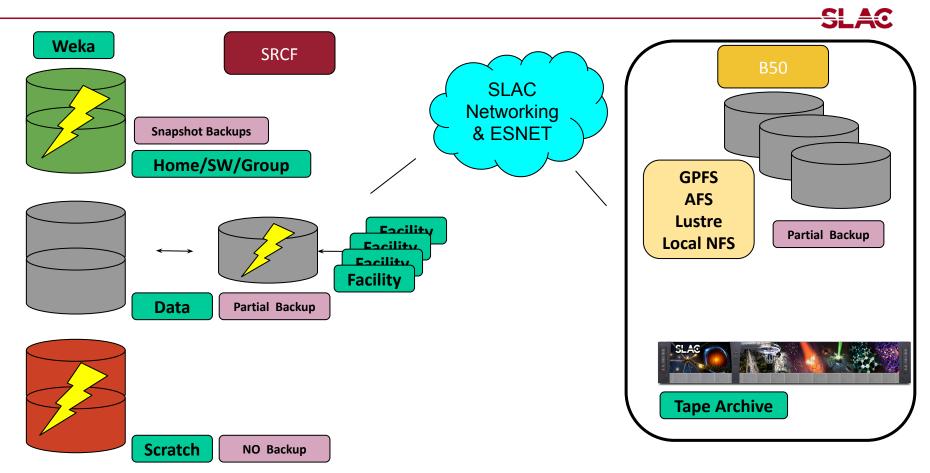
- Systems Integration
- Broad range of services for interactive analysis, workflow control, batch system access, and user management
- Support complex data storage, access, and management needs


S3DF located at the SRCF Data Center at SLAC

SLAC



- 6MW Facility with air cooling
- Flywheel + Generator allows for resilient power
- Space for over 100 racks
- 400 Gbps Networking to SLAC backbone


An Integrated Compute, Storage & Services Architecture

S3DF Batch Systems & Services

S3DF Storage Systems

An Integrated effort to support Scientific Computing

SLAC

Integrated Scientific

& Data-Intensive Computing

Delivery of the SLAC Science Mission

S3DF → IRI

- S3DF provides core computing, data services, and enables use of cloud technologies for all SLAC experiments.
- Seamless access from scientific facilities.
- Integration with broader ASCR HPC resources to enable an Integrated Research Infrastructure.

Algorithms, AI/ML for Workflows

Leverage Stanford's research expertise to enable complex, data-intensive workflows through

- Algorithmic improvements
- Use of new AI and ML tools and technologies
- Provision of productive software ecosystems

Edge \leftrightarrow Exascale Integration (E2EI)

- Real and near-real-time processing for experiment operation and control
- Enable self-driving experiments to maximize the efficiency and quality of data collection.
- Use Ultra-low latency computing combined with Aldriven feedback controls

Stanford University Computer Science Research

SLAC HEP Computing

- SLAC is involved with computing for many HEP experiments
 - Rubin Observatory/LSST
 - US Data Facility (USDF) located at SLAC hosted in S3DF
 - Data transferred to SLAC within 2 minutes of acquisition real time alert generation
 - Offline processing
 - LSST Dark Energy Science Collaboration (computing mainly done at NERSC, ANL, Grid)
 - Current
 - Atlas , Fermi Gamma Ray Space Telescope, Super CDMS, LZ, DUNE , Theory
 - Future
 - CMB-S4, LDMX, DMRadio, ...
 - Emphasis on support of Cosmic Frontier experiments
 - Including many small/medium size experiments which often need large scale computing with small teams of people
 - Many experiments use HPC facilities as well as international collaborators (grid sites)
 - Goal to leverage HEP-CCE and IRI/HPDF to provide improved support/standardization

SLAC involvement with HEP-CCE (I)

- SLAC is very interested in becoming an institutional member of HEP CCE and participate in phase 2
 - We already have experiment involvement particularly from LZ and LSSTDESC
 - We have encouragement from lab management and DOE
 - Goal is to provide concrete proposal of scope before end of FY 24
- Portable Applications/Portable Workflows
 - Many SLAC experiments have complex workflows (see LZ talk yesterday for examples)
 - Currently different experiments use different tools
 - Increasingly these are hybrid workflows involving traditional compute/HPC
 - Want to understand (and give input) on how IRI/HPDF will handle hybrid workflows
 - Very interested in participating in the taskforce Salman described yesterday
- Optimizing Data Storage
 - Expand on SLAC's experience and support for xrootd
 - Add (remote direct memory access) RDMA support to xrootd
 - Bridge between HPC and the internet by fast-tracking HPC edge services
 - Expand data caching services popularized by Atlas, CMS, ESNET, Pelican, OSDF, PRP
 - Meta-data catalogs and data streaming, as above, this would benefit from combined HEP input

SLAC involvement with HEP-CCE (II)

- Scaling up HEP AI/ML Applications
 - Anomaly detection in LZ (+ potentially: XLZD)
 - SLAC has strong AI/ML groups, and several initiatives
 - Definitely an area we are interested in, collecting input from this meeting and will present more detailed proposal in future
- Accelerating simulations
 - High-precision simulations useful to plan future experiments
 - GPU-accelerated simulations (particle tracking) relevant to XLZD, nEXO, DUNE
 - Simulation-based inference actively being pursued for ATLAS and DUNE