

CSAID Roadmap | Data Center Cooling

Muhammad Atiq Siddiqui CSAID Roadmap Meeting | Data Center Cooling June 20th, 2024

Fermilab Data Centers - Current State

Fermilab's Data Centers are currently located in 2 primary facilities

- Grid Computing Center (GCC)
 - Compute, Networking and Tape Libraries
 - Clean UPS power and refrigerant based air cooling
 - No generator backup End of Life: 2030
- Feynman Computing Center (FCC)
 - Misc. IT, Critical Servers, Networking, Storage and Tape Libraries
 - Clean UPS power and refrigerant based air cooling
 - Generator backup available End of Life: 2035

Capacity

Total Capacity	Power (UPS)	Cooling	Racks	Rack Density
GCC (CRA, CRB, NRA, NRB, TRR)	~1.62 MW	~1.7 MW (n+1)	~160	10 KW/Rack
FCC (FCC2 and FCC3)	~1.2 MW	~1.1 MW (n+1)	~200	5 KW/Rack

Goal

The primary goal of our data center facility planning process is to create a sustainable, net-zero, and scalable data center facility infrastructure that supports the evolving computational demands of Fermilab's scientific mission.

Strategic Goals:

- Reduce energy consumption and costs
- Increase cooling capacity to support higher rack power density
- Improve reliability and uptime
- Enhance sustainability and reduce environmental impact

Key Objectives

Sustainability: Minimize the environmental impact of our data center by achieving net-zero emissions through a combination of energy-efficient technologies, renewable energy sources, and innovative cooling solutions.

Scalability: Design a flexible infrastructure that can adapt to the growing computational needs of scientific experiments like LHC Run 3, mu2e, SBND, DUNE, and HL-LHC, as well as accommodate future advancements in computational research

Adaptability: Continuously assess and update our facility planning strategy to align with the latest developments in scientific research, industry trends, and technological advancements.

Long-term Vision: Develop a forward-thinking strategy that extends beyond specific end dates, ensuring our data center remains a valuable resource for the scientific and industrial communities for years to come.

Roadmap Overview

High-Level Roadmap

🛟 Fermilab

Atia Siddiaui | CSAID Boodmon | Data Contar Cooling

Data Center Cooling – Importance

Importance of Efficient Data Center Cooling

- Critical for Equipment Reliability: Prevents equipment malfunction and failure due to overheating.
- **Maximizes Performance:** Ensures optimal operating temperatures for maximum computational output.
- Extends Equipment Lifespan: Reduces wear and tear caused by heat stress.
- Energy Efficiency: Lowers operational costs and environmental impact.

Data Center Cooling – Challenges

Increasing Heat Density: High-density compute environments generate more heat, pushing traditional air-cooling to its limits.

Innovative Cooling Solutions: Adoption of liquid cooling and immersion cooling for more effective heat dissipation.

Cost: Implementation of advanced cooling technologies can be costly

Moore's Law and the Thermal Challenge

- Moore's Law states that the number of transistors in a dense integrated circuit doubles approximately every two years.
- This exponential growth in transistor density leads to increased processing power, but also results in higher power consumption and heat generation.
- Modern CPUs generate a significant amount of heat, especially in highperformance data center environments.

Why Air Cooling is Hitting Limits:

- Traditional air cooling methods are becoming less effective in managing the thermal demands of high-performance CPUs/GPUs.
- Air cooling struggles to dissipate heat effectively in dense server racks due to limited airflow and space constraints.
- Relying on fans for air cooling can lead to excessive noise levels, which is undesirable in data centers.

Data Center CPU Comparison (2021-2024)

CPU Family	Year Released	Typical TDP Range (W)	Cooling Requirement			
Intel Xeon						
Ice Lake (3rd Gen)	2021	150-270	Air/Liquid			
Sapphire Rapids (4th Gen)	Early 2024	120-350	Air/Liquid			
Emerald Rapids (4th Gen Refresh)	Late 2024/Early 2025	120-350	Air/Liquid			
Granite Rapids (5th Gen)	<mark>2025</mark>	<mark>~500</mark>	Likely Liquid			
AMD EPYC						
Milan (3rd Gen)	2021	120-280	Air/Liquid			
Genoa (4th Gen)	Late 2022	170-360	Air/Liquid			
Bergamo (4th Gen)	Late 2022	170-360	Air/Liquid			
Genoa-X (4th Gen)	Early 2024	200-360	Air/Liquid			
Turin (5th Gen)	<mark>2024</mark>	<mark>~400</mark>	Likely Liquid			

Data Center GPU Comparison (2013-2024)

GPU Family (Nvidia)	Year Released	Typical TDP Range (W)	Cooling Requirement
Tesla K40	2013	235	Air
Tesla K80	2014	300	Air
Tesla P100	2016	300	Air
Tesla V100	2017	300	Air
Tesla T4	2018	70	Air
Tesla A100	2020	400	Air/Liquid
H100	2022	<mark>700</mark>	Liquid
B200	<mark>2024</mark>	<mark>1000</mark>	Liquid

The Liquid Cooling Solution

- Liquid cooling offers a more efficient and scalable solution to address the thermal challenges of modern data centers.
- By utilizing liquids with high thermal conductivity, like water or specialized coolants, liquid cooling systems can transfer heat away from CPUs much more effectively than air.
- There are several types of liquid cooling systems available, each with its own advantages and considerations.

Direct-to-Chip (D2C) Cooling

A cold plate is attached directly to the CPU die, allowing coolant to flow through microchannels and absorb heat directly from the source

Microfluid channels in a semiconductor chip

Direct-to-Chip (D2C) - Pros and Cons

Pros:

Very efficient cooling method, Scalable, enables higher clock speeds and overclocking potential, support for high density rack configurations 15 KW – 100 KW.

Cons:

complex installation, may require specialized motherboards and CPUs, potential for leaks, special consideration to rack dimensions for the installation of manifolds.

Immersion Cooling

Submerges the entire server or individual components in a non-conductive dielectric fluid that absorbs heat.

Immersion Cooling – Pros and Cons

Pros: Extremely efficient cooling, silent operation, high power density potential, reduced hardware maintenance, could support 20 – 200 KW per rack.

Cons: High upfront cost, requires specialized tanks and fluids, potential for leaks, may require specific hardware and cables compatibility, Operational complexity.

Rear-Door Heat Exchanger (RDHX) Cooling

Attaches to the rear of server racks and uses coolant to absorb heat from the exhaust air.

Rear-Door Heat Exchanger Cooling – Pros and Cons

Pros: Easier to retrofit into existing data centers as a replacement of rear rack doors, less invasive than D2C or immersion cooling.

Cons: Less efficient than D2C or immersion cooling, limited cooling capacity for high-density racks. 15-25 KW cooling capacity.

Note: Cost to deploy 10 racks to support 25KW per rack with RDHX is approx. USD 1.2M in GCC-CRC with no existing chilled water infrastructure in place.

Liquid Cooling Comparison

Parameter	Rear-Door Heat Exchanger (RDHX)	Direct-to-Chip (D2C)	Immersion Cooling	
Heat Load per Rack (kW)	15-20 kW	15-100 kW	20-100+ kW	
Cost	Low	Moderate	High	
Installation Complexity	Low	Moderate	High	
Scalability	Limited	Moderate	High	
Efficiency	Low	High	Highest	
Sustainability	Moderate	High	Highest	
Operational Ease	High	Moderate	Low	
			52 Fe	rmiab

Key Steps

Need Assessment: CPU vs GPU ? Hardware Strategy – in Progress

- Cost/Budget
- Choosing the right Liquid Cooling Technology
 - Evaluate coolant options
- Space/Infrastructure requirements
- Research and vendor selection
- Pilot Test
- Plan for Implementation
- Monitor and Optimize

Questions ?

