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Muon Collider Motivation

* Recent strengthening of interest in physics at the 10 TeV scale
* Would require =100 TeV CoM with protons

» Electrons
* Would radiate too much in a ring
* Alinear collider is long and expensive, plus beamstrahlung challenges

* So instead use muons
« Fundamental particles, all energy goes to interaction
« Higher mass then electrons, so no radiation issues, bend in a ring
« Butthey're unstable: everything must happen fast
« They're difficult to make: keep losses low
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Muon Colliders and P5

* From the draft report:

« “we recommend targeted collider R&D to establish the feasibility of a
10 TeV pCM muon collider.” Note they do not intend to close off other
options for these energies (e.g., 100 TeV protons, plasma acceleration, ...

« “With a 10 TeV pCM muon collider at Fermilab as the long-term vision...”

* “a goal of being ready to build major test facilities and demonstrator
facilities within the next 10 years”

* “The US should pursue a leading role in the muon collider design effort, in
concert with the International Muon Collider Collaboration (IMCC)”
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Muon Collider Facility Overview

* Proton driver creating high-power proton beam
 Front end: create pions at target, capture muons, convert to bunch train

« Cooling: reduce emittance, combine into one bunch
» Acceleration: increase energy
« Collider ring

Proton Driver Front End Cooling Acceleration Collider Ring
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Target and Initial Capture

* Proton beam (1-4 MW) hits target, ",
producing pions, decay to muons

* Pions produced with a large
angular and energy spread but a
small spot size

« Target is in a high field solenoid
(15—20 T), which tapers down to a
lower field to capture a large
angular divergence
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Capture of Bunch Train

« Beam develops a time-energy correlation
« REF cavities form bunches
« Adjust RF frequencies to glve bunches similar energies

 Works for both HEES
muon signs

End of Drift

End of Buncher
End of rf—rotator

End of cooling
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lonization Cooling

 Lose transverse and longitudinal momentum o] . ==
In absorber B

« Large angular divergence in absorber relative to
multiple scattering: strong focusing, high field

» Restore longitudinal momentum in RF cavity

« Dipole field and triangular absorber couple
transverse to longitudinal, cool longitudinally

« Cool bunch train, then merge to single bunch
and cool more

Emit long (mm)
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Acceleration to High Energy: Outline

* High-level factors driving accelerator design
 Pulsed synchrotrons (RCS)

 Fixed field alternating gradient accelerators (FFAS)
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Ring Size

« 50 TeV protons require a ring 10 times larger than 5 TeV muons:
right? Well, sort of.

* This is pretty much true for the collider ring. So a 10 TeV center of
mass collider ring fits comfortably on the Fermilab site; an
equivalent proton collider would not.

 Acceleration is more complicated: muons decay
* Protons: can take hours to ramp superconducting magnets if you want

« Muons: you're in a hurry. You have a few ms. You cannot ramp (traditional)
superconducting magnets in this time. But you could ramp iron-dominated
magnets. But they won’t get you fields above about 2 T.
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Muon Decay in Acceleration

* Muon decays behaves logarithmically: )
mc

N1 (Eq +pic) GeT

No \Ep + poc

* Average accelerating gradient G determines relation between
transmission factor and energy gain factor. Can’t relax at high

energy.

* In MAP we specified 3.5 MV/m; IMCC study is using 2.5 MV/m and
even lower
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RF Cavities

« Minimize RF for cost and efficiency

» Make many passes through same cavities
AE 1 BcAE

GL 271 G pc
* Minimize circumference of accelerating stages
 High fields in dipoles, large dipole packing fraction

 Cost and efficiency drive you toward higher frequency
 But large longitudinal emittance may get in the way
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Pulsed Synchrotrons

* Pulsed magnets need to be iron-dominated to change fields on a
ms time scale

* [ron dipoles will be limited to a bend field of 1.75 T
« 2.0 T if you use Fe-Co, but cobalt might be a radiation problem

« With only iron dipoles, could only accelerate to 1.3 TeV on the
Fermilab site
« Not even accounting for quadrupoles, RF, etc.

* Need to get a higher average bend field

L?" Broakhaven
nal Labor

12



Hybrid Dipoles

* Need a higher average bend field with changing magnetic field

» Mix constant field superconducting magnets with iron magnets that
bend backward at low energy and forward at high energy

* More SC magnet: higher energy; more iron magnet: more range

High Energy Orbit

Half Cold ¢# el Warm B Cold

Quadl] Dipole {0 Dipole Dipole B Dipole

Low Energy Orbit

L? Brookhaven
National Laboratory



Dipole Field and Circumference

* What is the circumference from dipoles only?

« Starting point:

q
— (BcL¢ + Byly) = p_ (BcLe — Bwlw) = 2m

P+
e Circumference
P+ P- D+ D-
Lo+ Ly =— =
¢ iw q(BW BW+BC+BC>

 Even for infinitely high superconducting fields, there's a minimum
circumference for a given energy range: e.g., 2.5-5 TeV, 15 km

L?" Broakhaven
nal Labor

14



Dipole Field and Circumference

* Another point of view: average dipole field at high energy:
2B.By,
B¢ + By — (B¢ — Buw)(p-/p+)
* With p_ = p,, B, as you would expect
* With p_ =0, get 2B:-By, /(B + By) (e.9., Byy = 1.75T, B, = 14 T, get
3.11T)
* With p_ =p, /2, number would be 5.1 T

* A tradeoff between energy range and average bend field
* As energy range increase, fraction of warm dipole increases
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Add Quadrupoles

« Can’t only have dipoles, need quadrupoles
circumference do they require?

« Assume iron quadrupoles pulsed to o

maximum 1.2 T pole tip, 50 aperture

plus 1 cm overhead, factor of 2 energy
gain, 5 TeV max

* End up with 9 m quadrupoles, and
20% quadrupole occupancy

Pole Tip Radius, pger [mm] (solid)
w
o
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Add Quadrupoles

* Instead, interleave superconducting and warm quadrupoles like

with the dipoles

 Downside: need extra drifts between
magnets

» Use similar formulas to dipoles, assume :

60

50

lid)

F=y
o

12.5 T superconducting pole tip field |
- Effective max pole tip field is 3.7 T
» Now roughly 3 m long dipoles,
6% occupancy or so
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Add Quadrupoles

 As cells get shorter, quadrupoles must get longer due to stronger

focusing, thus higher occupancy fraction

« But as cells get longer, occupancy
fraction goes down, but beam size
grows as well

* Quadrupoles start getting longer at some
point

* Optimum is somewhat near minimum
quadrupole length
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Add Quadrupoles

* Now do things more carefully: put 50 cm drifts between magnets
* Minimum quad length at ~12% occupancy
» Quadrupole apertures growing rapidly

-=5.0 1

for lower occupancy
* Roughly 90 m long cells
« 7 T dipole fields to reach 5 TeV

Average Arc Dipole Field vs. Cell Length
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Dipole Field and Energy Range

* From before: factor of 2 energy gain, average bend field at high
energy of 5.1 T, not 7 T. Choices:
 Factor of 2 accelerating from 1.75 TeV to 3.5 TeV
* Or accelerate from 3.6 TeV to 5 TeV

« But with these lower energy ranges, dipoles occupancy fraction will get
better. Need to close the loop (work in progress).

 But let’s not forget RF...
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Rough RF calculation

* Rough starting assumptions
« Low average gradient of 1 MV/m (90% transmission for a factor of 2)
« 25 MV/m real estate RF gradient (roughly ILC number)

45 degrees off-crest for the bucket

« Careful with low average RF gradients: you spend a larger fraction of your voltage on
keeping the RF bucket large enough

* Result is 6% occupancy for RF

* Now average bend for 5 TeV goesto 7.5 T

« Slight reduction in maximum energy for factor of 2 or energy range for
o5 TeV
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Additional RF Complications

* Need several RF straights (CERN studies estimated 32)
« Synchronization between energy and dipole field
« Synchrotron tune is around 1; RF kick-drift pair must be below 0.16,
preferably lower
» Making magnet drive current linear with time is expensive

« Make up for it by changing RF phase to keep acceleration rate and field
change rate synchronized

* Need excess bucket area for this: more RF voltage
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Putting it all Together

* Need to put together designs with more factors considered
« Spaces between warm and cold dipoles
« Compute RF phase from required bucket area
« Add dispersion suppression between RF and arc
» Chromatic correction sextupoles
« Kyle Capobianco-Hogan (student, SBU) is working on putting
together a design that takes all this into account self-consistently
 Plots show here are from some of his initial studies
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What is an FFA

* Fixed Field Alternating gradient accelerator

 Large energy range (e.g., factor of 2) in a single beamline

« Magnet fields do not vary with time

. Alternatlng gradient focusing in compact cells for small orblt
excursion o R e S s RS

« Motivation for muon acceleration:
superconducting-only solution that : —
will scale with magnet technology; s e = |

Hda A B 1
overcome the limited field in iron e e s e

Orbit (cm)
o
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What is an FFA

* A single cell is duplicated around the ring

« Each cell has a long drift that can contain an RF cavity
» Also used for injection/extraction/etc.

« For muons: accelerate both signs, requires reflection symmetry for
consistent injection/extraction

* An FDF triplet with a long RF
straight is the simplest solution

Orbit (cm)
o

0 4 8 12 16 20 24 28 32536
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FFA to Accelerate to 5 TeV

* Older study, parameters are inconsistent with pulsed synchrotron
study

» 12% of circumference occupied by RF
« 50 cm between objects

* Optimize to minimize the maximum field at the magnet coil
 Defined so that 4.50 is at 2/3 of coil radius
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Sample Result

* Note tunes, orbits vary with energy

« Sample result for factor of 2 energy gain
* Just under 480 cells

* 4 m for RF (or injection/extraction)

* Optimization for field

* F field is 12.4 T at outside

e D field is =5.3 T at outside
 Reverse bend
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Field and Energy Range

« Assume maximum energy of 5 TeV

« Magnet field depends on minimum
energy

* Plot shows field at coil, at 1.5 times
beam radius, and field at beam

* Factor of 2 ener ain possible, but
high fields 9 P

 Limitations similar to pulsed synchrotron

* Minimum energy 3.1-3.6 GeV for 5 TeV max for
12.5 T max

| —— Field at Coil

—— Field on Beam

1.0 1.2 14 16 18
Factor in Energy Gain

» Factor of 2, maximum energy 3.5-4.4 TeV for 12.5 T max
 Remarkably similar to pulsed synchrotron numbers
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Aperture

 For factor of 2, too large for Tesla
cavities

« 650 MHz probably possible

« SC magnet apertures are also large

©

» Reduced gradient may require longer
straight
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Injection/Extraction

* This configuration (FDF) makes horizontal favorable
« Beam near inner/outer edge of magnet

* Number of straights for kickers to get separation

« For 0.2 T kickers, about 3 straights for extraction
* Injection harder due to tune near 0.4. Reducing tune would lead to higher
main magnet fields

 Challenge is extraction septum. Ideas to manage:
« Generate angle and position at septum
* Pipe penetrating into aperture
« Special magnets with larger apertures (higher fields!)
« Longer straights (larger fields); maybe taper straight length
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Acceleration

 Design is optimized for peak field
* Need to consider longitudinal dynamics
* One option is to shift RF phase

« Without shifting phase, can do serpentine
acceleration

» Requires designing for a more symmetric
time of flight vs. energy

» Will lead to higher fields
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Further FFA Studies

 This was just a first look

« Additional areas of study needed
 Look at longitudinal dynamics; do we need to adjust the lattice?

* Look at DFD triplet

« To what extent to nonlinear fields help?

* Need a concrete injection/extraction design

 Look at tapered design to get longer drifts for injection/extraction
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Pulsed Magnet Studies

* [ron response

* No good data on iron response at high ramp rates and approaching
saturation

» Losses are important, but should also understand response

« Measure material response to single pulse for various ramp rates and
maximum fields

 Build a small prototype, measure voltage/current/field with a range of drive
pulse amplitudes and ramp rates

* Power supplies for production systems
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Collaboration with the IMCC

* IMCC has contributed incredibly to the pulsed synchrotron design

« Extensive studies of power supply design

« Studies of many aspects of lattice design and beam dynamics
 Longitudinal dynamics, coupled with power source limitations
» Impact of the number of RF stations
* Collective effects
- Lattice design framework

* A program looking at iron magnets
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Conclusions

* The largest ring in @a muon collider is the one that accelerates
beams to the highest energy

 Pulsed synchrotrons or FFAs both appear able to accelerate
beams to similar energies near 5 TeV

* There is a tradeoff between energy gain and maximum energy in
the acceleration design

* A likely scenario seems to be roughly a factor of 2 energy gain to
some energy below 5 TeV, then later a second ring in the same
tunnel to reach a higher energy
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