Characterizing the Performance of Novel Charge Readout Structures in High-Pressure Gaseous TPCs

T. Mohayai, A. Bross, A. Fava, A. Marino, D. Caratelli, J. Raaf, J. Urheim, J. Zettlemoyer, M. Messier, R. Gran, V. Jain et al.

<u>RDC6</u>, RDC4, RDC1

new collaborators welcome!

UNIVERSITY OF MINNESOTA DULUTH

Driven to Discover

UC SANTA BARBARA

Overview & Motivation

- Benchmark achievable energy threshold and spatial resolution for <MeV-scale signals in high pressure gas argon TPCs using optimized/novel charge readout structures in a low energy neutron beam
- Impact:
 - Approach full reconstruction of all secondaries in neutrino interactions
 - Improve neutrino interaction physics modeling for future neutrino oscillation experiments
 - \circ $\;$ Extend BSM sensitivities:
 - Constrain standard interaction backgrounds for BSM searches (Neutral Heavy Leptons)
 - CEvNS searches
- Modern charge readout systems like GEMs not extensively used in high-pressure gas TPC prototypes

Advantages:

- Target material = density of the detecting medium
 - Addresses scalability challenges for future experiments that require a higher interaction rate without increasing detector size
 - A TPC similar in size to the one used in the ALICE experiment can collect approximately one million muon neutrino interactions in argon in a 1.2 MW beam when pressurized to 10 atm
- dE/dx for the final state particles

Novelty & Challenges:

- Higher pressure affects position resolution due to shorter ranges of nuclear recoil:
 - Requires higher spatial resolution to accurately reconstruct shorter-ranged recoils
- Operating charge amplification readout systems at high pressure:
 - Affects mean free path to secondary ionizations
 - Reduces multiplication gain of the readout system

High-level Milestones & Preliminary Timeline

- Test charge readout systems (GEMs/THGEMs, Micromegas) up to 10 atm in existing small-scale test stand using a calibration source year 1:
 - Evaluate gas gain and diffusion
 - Determine necessary design optimizations
 - Simulation framework for charge readout system performance and tracking in the beam prototype starts in this year
- Apply the lessons learned to develop and test a charge readout system with high gain and spatial resolution, then scale it up to the size of a prototype year 2-3
- Construct the prototype with the optimized charge readout system for a neutron beam test (pressure vessel and beam run costs covered by a start-up) year 4–5:
 - Validate its performance at Indiana University's Low Energy Neutron Source facility
 - \circ ~ Expected proton track energies from neutrons ~100s of keV to few MeV ~

Thanks for the opportunity to share our idea; questions and feedback are very welcome!

Same neutrino event in a High Pressure gas TPC vs LArTPC with full reconstruction

Importance of Tracking of Low Energy Protons for Neutrino Oscillation Experiments

• The HPgTPC allows a future neutrino oscillation experiment like DUNE to be more sensitive to low energy hadrons where neutrino interaction models are at odds, helping to resolve these disagreements

Existing Small-scale Test Stand

