Electron-drift TPCs with ⁸²Se

- Large TPCs have the highest tech readiness of any 100-T-scalable 0vbb search method
- The option to make 100T TPCs out of anything other than xenon would be great
 - ¹³⁶Xe cost/availability is a killer
- ⁸²Se is abundant, high-endpoint, and its complex chemistry includes many liquid/gas forms
 - SeF₆ is electronegative (like SF₆); that's not a no-go but it's a big step down in technical readiness.

 $\begin{array}{ccc} H_2O & H_2S & H_2Se \\ \text{water} \rightarrow & \text{hydrogen} \rightarrow & \text{hydrogen} \\ \text{sulfide} & \text{selenide} \end{array}$

furan \rightarrow thiophene \rightarrow selenophene

- I have suggestive evidence that H₂Se and selenophene are *electron drift gases* (H2Se: literature, selenophene: theory)
 - selenophene maybe also liquid
- effort underway to show drift/gain in the lab at CWRU
 - moving slow to get EHS details right
- Whitepaper plan: strawman design/background/sensitivity study of large ⁸²Se TPCs with electron drift
 - atmospheric-pressure H₂Se, high-pressure H₂Se, twophase selenophene
 - Initially assume simple/mature readouts (MPGDs)
 - goal is to motivate gasRD funding
- Author list: (1) me, (2) Aneesha Avasthi, (3--) you?