RDC4 Meeting

GAMPix:

Grid Activated Multiscale Pixel

A fine-grained, low-noise and ultra-low power pixelated charge readout for NL TPCs

Aldo Pena Perez and Bahrudin Trbalic On behalf of the GAMPIx team and SLAC TID-ID IC Dept.

Thursday, 20th May 2024

Agenda

1. GAMPix Concept

Motivation and background

2. Applications

 $\gamma\text{-}\mathsf{TPC}$ in Space and DUNE

3. Key Specifications

Design for low-power and low-noise

4. ASIC Readout Architectures

Brief overview

5. Conclusions

1

Grid Activated Multiscale Pixel Readout

Key features:

- A novel fine-grained, low-noise and ultra-low power pixelated charge readout [1-2]
- Electron track detection with a dual scale system in LArTPCs

Diffusion Independent

(Can use diffusion to estimate drift length)

Example: MeV gamma ray measured in LAr TPC. Red circles are electron recoil tracks.

Challenges with fine scale readout

• Electron clouds **diffuse** while drifting to anode

1000 keV, 21.2K e-

- Charge loss when diffusion ~ sensor size
- High sensor count prohibitive power in cryogenic TPC

TPC cell

Approach:

Coarse (cm-pitch) induction grids followed by fine grained pixels

2

Applications

Applications

γ -TPC in Space (GammaTPC Telescope)

- 500µm-pixels, ENC 20e-
- 1cm-wires, ENC 30e-
- Track imaging resolution ~0.25mm
- Energy resolution < 1% for electron tracks > 100keV (2k e-)
- Power consumption ~1W/m2 (Saves by a factor of 10^3 - 10^4)
- Drift length measurements vis diffusion with ~5% accuracy

Energy [keV] 250 300

> 500 1000

Applications

Potential on DUNE

- Possible readout for DUNE Far Detector Module #3
- 5mm-pixels, 5cm-wires/grids
- Small charge deposition (blips) retained
 → Lower detection threshold (sub-MeV) and better energy resolution
- Drift length determined without external t₀
 → improve background rejection
- Expect to improve the supernova neutrino measurements and the energy resolution in all the measurements

Applications

Towards GAMPix Hardware Test

- Built a small LAr TPC prototype for upcoming test in lab setup
- Initial proof-of-concept, with existing (higher noise, no power-switching) CRYO ASIC ($\sigma_e \sim 100e$ -@few pF load)

Chip Photograph R&D Prototype | 7mm x 9mm

3

Key Specifications

Key Specifications (preliminary)

Coarse grid wires		Pixels	
Pitch	1 <i>cm</i>	Pitch	500 µm
Wire length	$\leq 20 cm$	Pad size	$200, \mu m$
Wire diameter	$100-200\mu m$	Pad capacitance	500 fF
Capacitance	$\leq 2 - 3 pF$	Noise - requirement	$< \sim 50 e^{-1}$
Noise - requirement	$< 30 e^{-1}$	Noise - expected	$< 25 e^{-1}$
Noise - goal	$10 e^{-}$	On power - expected	0.2 mW/ch
Noise - expected	$< 20 e^{-1}$	Average power - requirement	$\leq 3 W/m^2$
Power - requirement	$\leq 1 mW/ch$	Average power - expected	$\leq 0.8 W/m^2$

- Two readout systems aimed for GAMPix
 - Pixel chip

Low-noise, power-pulsed pixelated architecture

• Coarse grid chip

Low-noise, low-power single (or few) channel architecture

4

ASIC Readout Architectures

R&D Design Strategy

• Design leverage SLAC's expertise in:

TRIGGER

Pixel Readout: Synchronous-Reset

Key Features

- Scheme for duty cycle systems where signal arrival is defined \rightarrow GAMPix
 - Widely used approach in our high-speed x-ray imager ASICs
- Compatible with a trigger signal
 - Would enable fast recovery times → Simple switch in feedback
- Correlated Double Sampling (CDS) mitigates CSA flicker, acts as shaper
- Preliminary noise (CSA only) is ~18e- at 87K with Cdet = 500fF

Coarse Grid Readout: Continuous-Reset

Key Features

- Scheme for continuous data streaming systems and shaping of the signal
 - Scheme used in CRYO ASIC A charge readout for LN TPCs
- Serves as trigger system for the pixel readout
- Pole-zero scheme with antialiasing filter (Bessel or Semi-Gaussian)
- Programmable shaping times
- Preliminary noise (CSA + Bessel) is ~40e- at 87K with Cdet = 2.5pF

ASIC Readout Architectures (Pixel Chip)

SLAC TECHNOLOGY

RDC4 Meeting | Thursday, 20th May 2024

Development Plan – Phase I

Small R&D prototype [1-2]

- 5mm x 5mm proof-of-concept R&D prototype
- Design and fabrication in 130nm CMOS
 - Verification at 300K and 233K (foundry models)
 - Cold optimization (custom cryo models)
- Small matrix array of pixel readout
- Pixel architecture with low-noise and power-pulsed
- External trigger system
- Supporting electronics with reduced functions (i.e., bias, programming the device, etc.)
- Goal Retire highest risks of the design: Noise & low-power at 87K

CSA-1

Folded with PMOS input

- Based on KPiX [8]
- Gain boosting (> 80dB)
- Power pulsed
- 2.0V supply
- Coarse electrode readout
- Low quiescent current
- For now, ideal bias

CSA-2

- Class-C inverter-based
- Used in SD ADCs [9]
- Gain boosting (> 90dB)
- Power pulsed
- 2.0V supply
- Pixel readout
- Low quiescent current
- Initial biasing circuitry

Simulation conditions CSA supply = 2.0V CF = 4fF | Cdet = 500fF | Qin,max = ~1fC

Parameter AC frequency response	Simulation Across Temperatures							
	27 C (300 K) Foundry models		- 40 C (233 K) Foundry models		- 113 C (165 K) Custom cryogenic models		- 186 C (87 K) Custom cryogenic models	
Amplifier	CSA-1 ¹	CSA-2 ²	CSA-1 ¹	CSA-2	CSA-1 ¹	CSA-2	CSA-1 ¹	CSA-2
DC gain [dB]	86.43	86.03	90.43	92.38	89.75	98.07	79.13	102.39
Phase Margin [deg]	67.18	80.36	66.51	78.88	67.69	79.02	68.19	73.27
GBW [MHz]	139.17	94.02	148.75	111.94	131.42	134.03	152.88	147.26
ON-state ³ Current consumption [uA]	467.09	83.78	359.23	85.59	282.17	83.87	216.74	77.95
OFF-state Current consumption [uA]	A few pA, however, simulations with leakage current analysis are in progress							
Settling time after trigger [nsec]	< 500n	< 500n	< 500n	< 500n	< 500n	< 500n	< 500n	< 500n

^{1,2} For now, ideal bias. Room for improvement to reduced quiescent current

Simulation conditions

CSA supply = 2.0V CF = 4fF | Cdet = 500fF | Qin,max = ~1fC

Parameter Noise of CSA [e-]	Simulation Across Temperatures					
	27 C (300 K) Foundry models	- 40 C (233 K) Foundry models	- 113 C (165 K) Custom cryogenic models	- 186 C (87 K) Custom cryogenic models		
Folded architecture ¹	~25	~23	~20	~18		
Inverter-based architecture ²	~28	~26	~24	~20		

¹ Only noise of CSA is reported with ideal bias circuit

² Only noise of CSA is reported with preliminary biasing circuitry

5

Conclusions

Conclusions

- GAMPix: A fine-grained, low-noise and ultra-low power pixelated charge readout for NL TPCs
- Sub-millimeter tracking images
- Noise level < 50e-
- Triggered by the coarse grid: meet the power budget and reduce the data volume
- Energy resolution < 1% for γ-TPC: electron tracks > 100keV, drift length < 30cm
- Provides drift length < 5% accuracy
- Application on γ -TPC in space and on DUNE
- GAMPix paper on arXiv:2402.00902
- Testing and development underway at SLAC
- Look for collaborating efforts with other groups!

References

- 1. T. Shutt et al. "Development of a novel readout system for a liquid Argon time projection chamber MeV Gamma-Ray Telescope", 2021 NASA-APRA.
- 2. GAMPix paper on arXiv:2402.00902
- 3. A. Dragone, et al., "ePix: a class of architectures for second generation LCLS cameras", Journal of Physics Conference Series.
- 4. L. Rota et al., "SparkPix-ED: a readout ASIC with 1 MHz frame-rate for rare event experiments at LCLS-II", 2021 iWORID.
- 5. A. Peña-Perez et al., "CRYO: A System-on-Chip for Charge Readout in the nEXO Experiment", 2022 IEEE NSS/MIC.
- 6. A. Peña-Perez et al., "CRYO: A System-On-Chip ASIC for Noble Liquid TPC Experiments", 2020 IEEE NSS/MIC.
- 7. A. Gupta et al., "Read-Out Architecture of CRYO System-on-Chip ASIC for Noble Liquid TPC Detectors", 2020 MWSCAS
- 8. J. Brau et al., "KPiX A 1,024 channel readout ASIC for the ILC", 2012 IEEE NSS/MIC.
- 9. H. Luo et al, "A 0.8-V 230-uW 98-dB DR Inverter-Based ∑∆ Modulator for Audio Applications", 2013 JSSC.

Backup Material

