TMS – like detector: First preliminary studies with PRISM

loana Caracas on behalf of DUNE – PRISM working group

DUNE ND Meeting

26.06.2024

Overview

→ Look at the **impact** a **TMS**-like **detector** would have **on PRISM** Analysis

- Currently have only the old (ND-GAr like) parametrized reco → try re-parametrizing for TMS
- TMS-like features: charge reconstruction
 - momentum resolution
 - TMS energy cutoff

→ Effect on PRISM analysis

- Note: re-parameterizing the existent reconstruction is a big approximation (would need correct values and maybe detailed dedicated reconstruction eventually)
 - we can **start building** some **intuition about the capabilities and requirements of TMS** before full TMS-like ND sim production
 - **first studies** of the effect the 2 main TMS-like features would have on the PRISM oscillation sensitivities when flux systematics are applied

Main Plan

3

- TMS not magnetized: no charge selection in TMS (charge selection in ND-LAr)
 - framework in place: oscillation sensitivity with no systematics results (done)

– oscillation sensitivity with systematics: – flux systs (in progress)

– xsec systs (TO DO)

– detectors systs (TO DO)

- TMS energy resolution and energy cutoff (less scintillator bars and shorter TMS)
 - framework in place: 5% energy resolution and 6 GeV energy cutoff

– oscillation sensitivity with no systematics results (done)

– oscillation sensitivity with systematics: – flux systs (in progress)
 – xsec systs (TO DO)

– detectors systs (TO DO)

– different energy resolutions (3%, 10%..) and 5 GeV energy cutoff \rightarrow study how a shorter TMS would influence oscillation sensitivities (TO DO)

– repeat same study with a constant smearing of ~20 MeV rather than % energy resolution (TO DO)

What if TMS has no charge selection? (what if not magnetized)

• reconstructed charge variable within CAF files: **reco_q**

 $reco_q = -1 (\mu^+)$ $reco_q = +1 (\mu^- - requires Michel electron)$ $reco_q = 0 - never know charge$ ND_FHC: reco_q = -1 ND_RHC: reco_q = +1

NDCuts (RHC) = reco_numu && (muon_contained || sr->muon_tracker) && **reco_q == +1** && Ehad_veto<30

→ applied to ND data (I.e before background subtraction)

What if TMS has no charge selection? (what if not magnetized)

• reconstructed charge variable within CAF files: **reco_q**

 $reco_q = -1 (\mu^+)$ $reco_q = +1 (\mu^- - requires Michel electron)$ $reco_q = 0 - never know charge$ ND_FHC: reco_q = -1 ND_RHC: reco_q = +1

NDCuts (RHC) = reco_numu && (muon_contained || sr->muon_tracker) && **reco_q == +1** && Ehad_veto<30

→ applied to ND data (I.e before background subtraction) If no charge selection ~ 9 × 10⁶ extra events in RHC mode

What if TMS has no charge selection? (what if not magnetized)

• reconstructed charge variable within CAF files: **reco_q**

 $reco_q = -1 (\mu^+)$ $reco_q = +1 (\mu^- - requires Michel electron)$ $reco_q = 0 - never know charge$ ND_FHC: reco_q = -1 ND_RHC: reco_q = +1

NDCuts (RHC) = reco_numu && (muon_contained || sr->muon_tracker) && **reco_q == +1** && Ehad_veto<30

What if TMS has no charge selection? (what if not magnetized)

• reconstructed charge variable within CAF files: **reco_q**

 $reco_q = -1 (\mu^+)$ $reco_q = +1 (\mu^- - requires Michel electron)$ $reco_q = 0 - never know charge$ ND_FHC: reco_q = -1 ND_RHC: reco_q = +1

NDCuts (RHC) = reco_numu && (muon_contained || sr->muon_tracker) && reco_q == +1 && Ehad_veto<30

→ Remove the reco_q cut for events in TMS only (NDLAr will have charge selection) and study the effects this has on PRISM oscillation sensitivities

Oscillation fits with flux systematics - $sin^2\theta_{23}$

- Nominal (stats-only) fit does not change when no reconstructed charge
- Old plots (from CM May2024) reco_q cut removed everywhere: both in NDLAr and TMS
 → to be updated with reco_q cut removed for TMS only
 - PRISM sensitivity changes for 4 flux parameters for sin²θ₂₃ if TMS + NDLAr have no charge reconstruction (9 flux parameters reducing PRISM sensitivity in sin²θ₂₃)

8

Oscillation fits with flux systematics - $sin^2\theta_{23}$

- Old plots (from CM May2024) reco_q cut removed everywhere: both in NDLAr and TMS
 → to be updated with reco_q cut removed for TMS only
- PRISM sensitivity changes for 4 flux parameters for sin²θ₂₃ if TMS has no charge reconstruction

 9 flux parameters reducing PRISM sensitivity in sin²θ₂₃

- for this particular flux parameter – Proton Beam Transverse X (interaction position) – the sensitivity is improved for the no reconstructed charge case \rightarrow lower parameter shift values chosen for the best fit

No Charge Reconstruction in TMS: main remarks so far

– based on the previous (CM May 24) study: q_reco cut removed from both ND-LAr and TMS –> to be updated for the current study: no q_reco cut in TMS only

- PRISM sensitivity for the nominal (no systs) case is unchanged in a no charge separation scenario
- PRISM for $\sin^2\theta_{23}$ sensitivity changes when flux systematics are applied

– 3 (decay pipe related flux parameters) out of 4 cases sensitivity is reduced, while sensitivity increases when the proton beam transverse X (interaction position) flux systematic is applied

- PRISM sensitivity for Δm_{32}^2 is almost not changed at all when flux systematics are applied
- PRISM sensitivity for ΔCP is not changed at all when flux systematics are applied
 flux parameters have a minimal effect on ΔCP

Results should change with no q_reco in TMS but q_reco NDLAr: significantly less WSB events at E <~1.3 GeV

<u>Note</u>: very preliminary study \rightarrow however most important results would be obtained once all systematics (flux, flux + xsec, flux + xsec + detector) are applied

Next: look how the energy resolution (TMS resolution) and E cutoff affects the oscillation sensitivity

What if TMS momentum resolution is worse than ND-GAr (thicker iron or less scintillation bars) ?

- 1) Estimate what the TMS would measure
 - split true lepton energy Elep into Energy deposited in ND-LAr and remaining energy to be deposited in TMS:

Elep = Edep_NDLAr + E_TMS , Edep_NDLAr = $0.002 \cdot (600 - vtxz)$

− lepton energy left for TMS: E_TMS = Elep - $0.002 \cdot (600 - vtx_z) \rightarrow true$ lepton energy deposited in TMS

What if TMS momentum resolution is worse than ND-GAr (thicker iron or less scintillation bars) ?

- 1) Estimate what the TMS would measure
 - split true lepton energy Elep into Energy deposited in ND-LAr and remaining energy to be deposited in TMS:

Elep = Edep_NDLAr + E_TMS , Edep_NDLAr = $0.002 \cdot (600 - vtxz)$

− lepton energy left for TMS: E_TMS = Elep - $0.002 \cdot (600 - vtx_z) \rightarrow true$ lepton energy deposited in TMS

2) Smear the energy by some additional amount for TMS-matched – 3%, 5%, 10% energy resolution – get reconstructed lepton energy in TMS: RecoE_TMS → smear E_TMS by i.e 5%

What if TMS momentum resolution is worse than ND-GAr (thicker iron or less scintillation bars) ?

- 1) Estimate what the TMS would measure
 - split true lepton energy Elep into Energy deposited in ND-LAr and remaining energy to be deposited in TMS:

Elep = Edep_NDLAr + E_TMS , Edep_NDLAr = $0.002 \cdot (600 - vtxz)$

- − lepton energy left for TMS: E_TMS = Elep $0.002 \cdot (600 vtx_z) \rightarrow true$ lepton energy deposited in TMS
- 2) Smear the energy by some additional amount for TMS-matched 3%, 5%, 10% energy resolution get reconstructed lepton energy in TMS: RecoE_TMS → smear E_TMS by i.e 5%
- 3) Apply TMS Energy cutoff at 6 GeV
 - only events with RecoE_TMS < 6 GeV will be selected</p>

What if TMS momentum resolution is worse than ND-GAr (thicker iron or less scintillation bars) ?

- 1) Estimate what the TMS would measure
 - split true lepton energy Elep into Energy deposited in ND-LAr and remaining energy to be deposited in TMS:

 $Elep = Edep_NDLAr + E_TMS$, $Edep_NDLAr = 0.002 \cdot (600 - vtxz)$

− lepton energy left for TMS: E_TMS = Elep - $0.002 \cdot (600 - vtx_z) \rightarrow true$ lepton energy deposited in TMS

2) Smear the energy by some additional amount for TMS-matched – 3%, 5%, 10% energy resolution – get reconstructed lepton energy in TMS: RecoE_TMS → smear E_TMS by i.e 5%

- 3) Apply TMS Energy cutoff at 6 GeV
 - only events with RecoE_TMS < 6 GeV will be selected</p>

4) Add back the energy deposited in ND LAr to get the ND lepton reconstructed energy: NDErecLep = RecoE_TMS + Edep_NDLAr

What if TMS momentum resolution is worse than ND-GAr (thicker iron or less scintillation bars) ?

- 1) Estimate what the TMS would measure
 - split true lepton energy Elep into Energy deposited in ND-LAr and remaining energy to be deposited in TMS:

Elep = Edep_NDLAr + E_TMS , Edep_NDLAr = $0.002 \cdot (600 - vtxz)$

− lepton energy left for TMS: E_TMS = Elep - $0.002 \cdot (600 - vtx_z) \rightarrow true$ lepton energy deposited in TMS

2) Smear the energy by some additional amount for TMS-matched – 3%, 5%, 10% energy resolution – get reconstructed lepton energy in TMS: RecoE_TMS → smear E_TMS by i.e 5%

3) Apply TMS Energy cutoff at 6 GeV– only events with RecoE_TMS < 6 GeV will be selected

4) Add back the energy deposited in ND LAr to get the ND lepton reconstructed energy: NDErecLep = RecoE_TMS + Edep_NDLAr

5) Extract oscillation parameters using PRISM Analysis

 \rightarrow see how this scenario affects PRISM sensitivities (nominal and systs applied)

1) Estimate what the TMS would measure, i.e. subtract energy deposited in ND LAr

true lepton energy in TMS: LepETMS = LepE – 0.002*(600-vtx_z); true visible energy stays the same: VisEtrueTMS = LepE + HadE

– include **TMS energy cutoff: Elep_recoTMSOnly** < **6.0** → additional selection

2) Smear the energy by some additional amount for TMS-matched. Maybe 3%, **5%**, 10% to start

2.1 Extract ELep_recoTMSOnly from a Gaussian with mean = LepETMS (true E in TMS) and sigma = 5%Etrue

2) Smear the lepton energy by some additional amount for TMS-matched – **5% energy resolution** – and then add back the energy deposited in ND LAr + energy cutoff at 6 GeV

Reco Lepton Energy for CC Events

 \rightarrow reconstructed lepton energy in ND with TMS: Elep_recoTMS = Elep_recoTMSOnly + 0.002*(600-vtx z) (Elep reco ND standard = Elep reco from CAF file)

Similar energy dependence of the reconstructed lepton energy deposited in ND with both TMS and ND-GAr before the energy cutoff, but slightly worse lepton energy resolution for TMS

2) Smear the lepton energy by some additional amount for TMS-matched – **5% energy resolution** – and then add back the energy deposited in ND LAr

→ reconstructed visible energy in ND with TMS: VisERecoNDTMS = Elep_recoTMS + HadEvisReco_ND

(VisERecoND standard = HadEvisReco_ND + Elep_reco)

Similar energy dependence of the visible reconstructed energy deposited in ND with both TMS and ND-GAr before energy cutoff, but slightly worse lepton energy resolution for TMS

TMS-like studies with PRISM: TMS energy resolution 5% + Energy Cutoff = 6 GeV

• Nominal: no systematics for all 4 channels combined and 7 yr – 336 kt-MW-yr exposure

– all of these effects are due to the energy cutoff (not present, I.e same nominal oscillation fit as "Standard" for all 3 parameters when only energy resolution 5% and no energy cutoff)

Overview

- First dedicated study towards the impact several TMS features would have on the oscillation parameters sensitivity
- Trying to reparametrize different parameters available in the ND sim/reco CAF files and mimic the TMS energy resolution → temporary solution until we get dedicated TMS sim/reco
- Study in the **very preliminary stage** (no charge reconstruction + **5%** TMS energy resolution + Ecutoff = 6 GeV)
 - ° nominal oscillation results are not modified by the absence of charge
- ° Nominal oscillation results for 5% TMS energy resolution and energy cutoff of 6 GeV: lower sensitivity for $\sin^2 \theta_{23}$, no sensitivity change in Δm_{32}^2 , increased sensitivity in δCP ?? **TO DO**
- Apply flux + x-sec + detector systematics \rightarrow study PRISM sensitivity for the 3 TMS scenarios
- Study different energy resolutions (7%, 10%, 12% etc)
- Study different (lower) energy cutoff (I.e 5 GeV)
- Study fixed impact of constant (20 MeV) smearing

→ Framework for this dedicated study is now in place: suggestions are welcome

BACKUP

BACKUP

• 5% Energy resolution

There is a difference in the reconstructed lepton energy distribution for the 5% case as well but very small (negligible effect on the oscillation fits)

BACKUP

• 5% Energy resolution

• There is a difference in the reconstructed lepton energy distribution for the 5% case as well but very small (negligible effect on the oscillation fits)

TMS Energy Resolutions

BACKUP: TMS Energy Resolutions

BACKUP: TMS Energy Resolutions

