
INSTRUMENTATION DEMO
July 24, 2024



GET THE SOURCE

• git clone https://github.com/retzkek/myjob.git
• Requires Go 1.22

• brew install go
• apt-get install golang
• dnf install golang
• nix-shell
• https://go.dev/dl/
• podman build –t myjob . 

• Builds binary in container.

https://github.com/retzkek/myjob.git
https://go.dev/dl/


REPOSITORY FORMAT

• Each step of the demo is in a branch:
• 01-server
• 02-logging
• 03-metrics
• 04-tracing

• git checkout 01-server



BUILDING AND RUNNING

• Go installed:
• export LENS_URL=https://landscape.fnal.gov/lens/query
• go build && ./myjob

• Docker/podman:
• podman build -t myjob .
• podman run -it --rm -p 127.0.0.1:8888:8888 \

–e LENS_URL=https://landscape.fnal.gov/lens/query \
myjob -a 0.0.0.0:8888



STEP 01: BASIC SERVER

• Accepts requests at /status/<jobid> and gets job info from the Lens API
• Submit job with jobsub
• Get its status

• curl -i localhost:8888/status/<jobid>
• Don’t worry too much about the Lens client (for now, feel free to investigate 

later)

git checkout 01-server



STEP 02: ADD LOGGING

• Add logrus library for structured logging, and some basic request logging
• We could use filebeat, fluentd, fluentbit, or promtail to collect the logs and 

ship them to Landscape
• If you run your application in OKD, it already sends the logs to Landscape!

• https://landscape.fnal.gov/monitor/d/JJQVkz74z/okd4-container-logs?orgId=1

git checkout 02-logging

https://landscape.fnal.gov/monitor/d/JJQVkz74z/okd4-container-logs?orgId=1


STEP 03: ADD METRICS

• Add the Prometheus client library and register a histogram metric of request 
durations

• Could point Prometheus at the /metrics endpoint to collect these metrics

git checkout 03-metrics



STEP 04: ADD TRACING

• Add the OpenTelemetry library and initialize the tracing module
• Yeah, this is a bit of a doozy, with a fair bit of boilerplate.

• Important: 
• set serviceName to something unique for yourself (or export OTEL_SERVICE_NAME 

env var)
• or set OTEL_RESOURCE_ATTRIBUTES env var to something like “myname=kretzke”
• also set OTEL_EXPORTER_OTLP_ENDPOINT as per 

https://landscape.fnal.gov/docs/data/tracing/
• We log the trace id, which you can copy-paste into Jaeger or Grafana to 

view the trace
• https://landscape.fnal.gov/jaeger/search
• https://landscape.fnal.gov/monitor/explore

git checkout 04-tracing

https://landscape.fnal.gov/docs/data/tracing/
https://landscape.fnal.gov/jaeger/search
https://landscape.fnal.gov/monitor/explore


NEXT STEPS

• Why doesn’t the trace show the Lens API call and connect to the Lens 
trace? 
• Lens uses Jaeger and OpenTracing libraries instead of OpenTelemetry. Should be 

compatible, but…
• Set up a dashboard with an alert on the request duration metric to let us 

know if we’re not meeting SLA (or some ”reasonable” threshold that 
indicates someone should check on the service)

• Set up blackbox monitoring of our service to make sure it is responding.
• Deploy to OKD


