
THE SHAPE OF DATA
What kind of monitoring data should your service send?
July 24, 2024

LANDSCAPE DOCUMENTATION

https://landscape.fnal.gov/docs/

Connection details and examples
All the information and links that are in this talk.

SSO Required

https://landscape.fnal.gov/docs/

MONITORING

• Monitoring or observability is a
broad subject, which involves the
collection, storing, and
querying/visualizing of three main
types of data:
• logs
• metrics
• traces

• These work together to provide the
developer and operator with a
complete picture and support rapid
responses

traces

metrics

logs

LOGGING

• Logging is the simplest form of monitoring, which begins the moment a
programmer writes their first “Hello, world!” program. Logs describe in detail
what an application is doing (or not doing sometimes).

• In monitoring terms, most logs are really events:
• what happened
• when it happened
• why it happened
• who/what caused the event
• what type of event/severity

• DO NOT LOG SECRETS OR SENSITIVE INFORMATION
• “but I just want to quickly see…” NO

STRUCTURED LOGGING

time="2021-03-09T21:55:27Z" level=info msg="handled request"
duration=453.906118ms length=0 method=GET origin=71.57.54.226
path=/job/42595777.0@jobsub02.fnal.gov/ traceid=296731105f77ab6c

• Use a structured logging library, e.g. structlog for Python and logrus for Go
• Use a standard, easily parsed format like logfmt or json. Custom parsers (e.g. grok) are fragile.
• Use ISO8601/RFC3339 timestamps, with timezone (or UTC)
• Try to keep related info in a single log event, and/or provide some way to connect events

(e.g. a unique trace ID)
• Exception: debug/trace logs, can become unwieldy and are only useful for someone looking

at them in context. Generally, should be disabled in production.

https://www.structlog.org/en/stable/
https://github.com/Sirupsen/logrus

COLLECTING LOGS

• Application should write logs to stdout/stderr or a file. Collect logs with
filebeat, promtail, or a docker plugin.
• Send logs to Kafka if they were collected by filebeat (or logstash), are well-

structured, and contain fields that you’ll want to do analytics on. These will be
put into Elasticsearch.

• Send logs to Loki if they are mainly for troubleshooting. These will be immediately
viewable in Grafana.

• Sometimes you may want to publish key events separate from other logs,
you can send these to Kafka, RabbitMQ (via AMQP or STOMP protocols), or
the Ingest service.

METRICS

• While logs describe the details of what an application is doing, metrics
provide aggregate high-level insight into the process, collected at some
regular frequency to allow for trending and anomaly identification

• Internal metrics are collected within the process and expose the internal
state.

• External, or blackbox, metrics are collected by some other service, and
reflect the status from the perspective of a user or client

• Metrics may be published via push, where the service sends the metrics
directly to the monitoring service, e.g. Graphite, Statsd

• … or by pull, where the monitoring service “scrapes” the metrics, typically
over HTTP, e.g. Prometheus

PROMETHEUS

• Prometheus is a service for collecting, storing, and querying system and
service metrics. It has a standard exposition format (which as evolved into
the standard OpenMetrics) and a rich ecosystem of libraries for publishing
metrics.
• Libraries typically include HTTP server, if service does not already have one or

wants to publish metrics on separate interface or port
• Some cases where the pull-based model used by Prometheus is not

appropriate, e.g. short-lived processes, services behind firewall
• push metrics to the Prometheus Pushgateway
• Collect metrics with local Prometheus and remote_write to Mimir
• Push metrics in document format to Kafka or Ingest

https://prometheus.io/
https://openmetrics.io/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/pushing/
https://landscape.fnal.gov/docs/data/metrics/

TRACING
• Distributed tracing provides a way to connect events across services, processes, or

threads.
• It helps operators and developers determine where and why failures occur, current

process states, and identify potential bottlenecks.
• A trace is typically instantiated by a single end-user request, and is then propagated

through the services associated with servicing that request.
• If relevant logs include the Trace ID, Grafana can correlate them.
• Your service should always look for a parent trace ID in however it gets called (there

are standards, and libraries implement them)
• Landscape runs the Jaeger service behind an OpenTelemetry collector to collect

OTLP traces over HTTP and makes them viewable in the Jaeger frontend and in
Grafana.
• OTLP also has some support for metrics and logs, they will be routed to Mimir and

Loki, respectively.

https://www.jaegertracing.io/
https://opentelemetry.io/

SUMMARY

• Collect and publish general service logs to Loki or Elasticsearch (through
Kafka)

• Collect and publish internal service and process metrics with
Prometheus/OpenTelemetry library.

• Publish key event data, possibly with metrics, in JSON to Kafka. Set up digest
processes to enrich and/or summarize the data if necessary.

• For distributed systems, use OpenTelemetry to publish tracing data. Accept a
parent trace ID in however your service gets called and pass one to
whatever you call.

• Monitor user-facing services with Blackbox monitoring.
• Set up alerts in Grafana to notify operations of unexpected conditions.

https://landscape.fnal.gov/docs/data/documents/
https://landscape.fnal.gov/docs/data/metrics/
https://landscape.fnal.gov/docs/data/documents/
https://landscape.fnal.gov/docs/data/metrics/
https://landscape.fnal.gov/docs/using/

DEMO TIME!
Metrics, Logging and Tracing with Prometheus, Loki, and Jaeger

Case Study: Lens API

LENS METRICS
• HTTP request metrics published with Prometheus Go library: https://landscape.fnal.gov/lens/metrics
http_request_duration_seconds_bucket{path="/query",le="0.005"} 50948
http_request_duration_seconds_bucket{path="/query",le="0.01"} 51110
http_request_duration_seconds_bucket{path="/query",le="0.025"} 51327
http_request_duration_seconds_bucket{path="/query",le="0.05"} 55991
http_request_duration_seconds_bucket{path="/query",le="0.1"} 58578
http_request_duration_seconds_bucket{path="/query",le="0.25"} 64500
http_request_duration_seconds_bucket{path="/query",le="0.5"} 99190
http_request_duration_seconds_bucket{path="/query",le="1"} 101526
http_request_duration_seconds_bucket{path="/query",le="2.5"} 102930
http_request_duration_seconds_bucket{path="/query",le="5"} 103725
http_request_duration_seconds_bucket{path="/query",le="10"} 104539
http_request_duration_seconds_bucket{path="/query",le="25"} 105082
http_request_duration_seconds_bucket{path="/query",le="50"} 105128
http_request_duration_seconds_bucket{path="/query",le="100"} 105164
http_request_duration_seconds_bucket{path="/query",le="250"} 105164
http_request_duration_seconds_bucket{path="/query",le="+Inf"} 105164
http_request_duration_seconds_sum{path="/query"} 35873.17846150313
http_request_duration_seconds_count{path="/query"} 105164

https://landscape.fnal.gov/lens/metrics

ALERT! 99TH PERCENTILE THRESHOLD EXCEEDED (GRAFANA)
(not a real alert, we don’t guarantee quite that good of a response)
histogram_quantile(0.99,rate(http_request_duration_seconds_bucket{job="lens",instance=~"$instance"}[$interval]))

LET’S GO TO THE LOGS (LOKI)

FIND THE SLOW QUERY

OH LOOK, A TRACE ID!

LOOK THROUGH THE TRACE (JAEGER)

WOW THAT’S A LOT OF CALLS (A LOT OF JOBS)

DID SOMEONE SAY ENCORE?
Metrics, Logging and Tracing with Prometheus, Loki, and Jaeger

Case Study #2: Jobview job log viewer

WELL WE GOT TROUBLE (RIGHT HERE!)

TO THE TRACE!

OH, SO IT REALLY WAS A LENS PROBLEM

OTHER RESOURCES

• Monitoring for everyone
• How Humans see data
• Fool-Proof Kubernetes Dashboards for Sleep-Deprived Oncalls
• Stacked Area Graphs Are Not Your Friend
• Friends don’t let friends abuse pie charts
• The SRE book: Practical Alerting from Time-Series

List at https://landscape.fnal.gov/docs/using/resources/

https://vimeo.com/241968477
https://youtu.be/fSgEeI2Xpdc
https://www.youtube.com/watch?v=YE2aQFiMGfY
https://everydayanalytics.ca/2014/08/stacked-area-graphs-are-not-your-friend.html
https://grafana.com/blog/2015/12/04/friends-dont-let-friends-abuse-pie-charts/
https://landing.google.com/sre/sre-book/chapters/practical-alerting/
https://landscape.fnal.gov/docs/using/resources/

