NP04 DAQ Status and Plans

Wes Ketchum DUNEDAQ CT Meeting 24 June 2024

Overall

- Things have gone pretty well
 - fddaq-v4.4.3 patch release tagged, built, and deployed Tuesday evening
 - DAQ was ready for beam on Wednesday evening
 - Various prescale configurations on beam trigger allow us to run with high instantaneous beam trigger rates
 - E.g. untuned beam with >250 Hz instantaneous rates, so *significant* pileup \rightarrow prescales of x16 bring to reasonable DAQ rates
 - Indications are we handle a 30-35 Hz instantaneous rate reasonably well
 - CTB performing well, doing what it should
 - DQM adequate
- Most importantly, huge thanks for people who have been here / sent people here
 - Lots of positive interaction, efficient problem-solving, lots of quality of life improvements
- If this was the DAQ we had for the summer, we could make it work and meet the baseline physics goals

Targeted improvements before the full beam run starting July 10

TOP PRIORITY

- CRT readout debugging / fixes
- Optimization of networking in readout and dataflow
- Trigger merging / overlap / pileup handling

HIGHLY DESIRED

- Stable and 'shifter-ready' TriggerPrimitive generation and running
- k8s running
- Standardizing DQM deployments

(LIKELY) NEEDING DAQ SUPPORT

- Laser running
- PDS readout optimizations

CRT Readout

- Haven't adequately tested CRT readout recently to diagnose DAQ issues
 - Reminder: possible segmentation fault pointing to pushing data from readout application to dataflow
 - Updates on handling of CRT processes should make testing easier now
 - Testing most robust if we can use some external-to-CRT-data trigger
 - Needs some time and attention
 - With some knowledge transfer from Wes on running the configurations

Data flow

- We are admirably handling ~ 30 Hz instantaneous rates in beam spill periods
 - From what we can tell in limited sampling of data, data quality is generally good
- However, we know there are issues
 - Push to slightly higher rates and we see trigger matching results come up periodically empty, higher rates of missed Rx packets, eventually trigger timeouts and inhibits
- Could use a push on multiple fronts
 - Can we upgrade readout servers to >10g output?
 - Do we have network configured well for readout and dataflow servers?
 - Do we have buffering, timeouts, pinning, etc. tuned well to optimize data rates given beam spill structure?
 - Are we properly isolating readout traffic and dataflow traffic?
- We are pushing at the edge, so likely hitting bottlenecks in both hardware and software
- Many aspects of investigation here coincide well with performance measurements, specifications on networking, and review of software

Trigger merging / overlapping / pileup

- Merging logic is doing what it's supposed to, but not providing what's most desired for protoDUNE-II: veto a second TD if its readout overlaps with the first
 - Desired result: 3 ms readout windows for all trigger records, no two trigger records have any overlapping readout window
- Logic likely not difficult to implement, but some care/decisions to be made on ...
 - What trigger bits get set in TD? (e.g. if two TCs come in with same timestamp, what bits get set?)
- We should understand that the needs/configuration choices here are likely different than the far detector
 - But may not be so different than a high-pileup near detector...

TriggerPrimitives

- TPG algorithms work*, and in system where we aren't stressing the readout, seem somewhat well-behaved
 - *generally keep up with data, don't seem to give complete garbage results?
- Still, there are a number of issues related to TP dataflow
 - TPs complicate readout server performance when we have high instantaneous rate of readout
 - Dynamics of TPSet creation seem ill-understood, causing downstream problems on trigger (ok, now effectively disabled), and tpwriter (Kurt took an initial look...) with either low or high rates of TPs
- What's needed?
 - It would be desirable to run with TPs at a reasonable threshold for 'physics' on at least one plane per APA
 - It would be highly desirable to run TPs at even a high threshold for use in overall detector monitoring
 - (not to mention how it'd be nice to have higher-level algs available for such checks too, but here there is detailed work that needs to be done to improve higher-level trigger alg performance...)

K8s running

- We have configurations being made for k8s consistently
- But ... immediately hit a stumbling block this week in trying to run k8s with the CTB
 - I spent no time investigating, I'm not sure of the status here actually
- IMO: we need to make a strategic decision about what our goals are here
 - Onboarding applications into k8s seems to never be a trivial process
 - Maybe CTB, CIB (laser), and (NP04)CRT are the last ones?
 - I am not confident that we will be ready to run stably with k8s for shifters
 - I think we need a better deployment strategy if we intend to use this in actual detector operations
 - And if this is a priority, we need to apply that deployment strategy to NP02 at minimum

DQM Deployments

- We've managed to hack together a number of processes to make some version of online DQM available
 - Scripts for copying portions of data to rscratch area, and managing the size of data in that area
 - 'analyzer' processes that can process data in that area and produce plots in an interval
 - a new 'display' simple web-page that shows those plots and automatically update them
 - Some version of 'justintime' looking at data in that area
- These are all currently running out of tmux sessions or crontab entries
- Now that they area all ~defined, and not requiring specific data resources, likely we can handle this better
 - Need to revisit discussions on making that happen, while still acknowledging that there will be continuing development there → need to be able to redeploy easily

DAQ Support Tasks

- Laser runs
 - I've not heard any additional plans, but I suspect the laser team will want to make use of this off-beam time to try some runs
 - Obviously we should push for integration with the CIB / triggered readout
- PDS optimizations
 - PDS team would like to try to lower thresholds, which means increasing bandwidth on self-triggered boards by running more links to FELIX
 - Firmware updates on DAPHNE
 - Some mapping updates in the DAQ (~easy)
 - Probably have to care more about optimizing readout on DAQ (doable of course, but work...)

Discussion

- Other big things I've missed?
- Obviously we can't do everything in a short period of time, and we need to prioritize
 - What's most impactful for ProtoDUNE-II?
 - What's truly important and useful for DAQ?
 - What can we put effort into and reasonably achieve in the time available?

