

Colliders

Creating and studying the heaviest particles

Grace E. Cummings, TRAC 26 June 2024

Why a *Collider*?

‡ Fermilab

‡ Fermilab

Need accelerators!

BIGGER ENERGIES -> BIGGER PARTICLES

OBSERVATION OF A DIMUON RESONANCE AT 9.5 GeV N 400 GeV PHOTON-NUCLEUS COLLISIONS

S. W. Herb, D. C. Hom, L. M. Lederman, J. C. Sens,[†] H. D. Snyder, and J. K. Yoh Columbia University New York, New York 10027

and

Bottom ("Beauty") quark discovered at Fermilab's E288 **Fixed Target** Experiment

‡ Fermilab

Limitations of fixed target

OBSERVATION OF A DIMUON RESONANCE AT 9.5 GeV IN 400 GeV PHOTON-NUCLEUS COLLISIONS
S. W. Herb, D. C. Hom, L. M. Lederman, J. C. Sens, [†] H. D. Snyder, and J. K. Yoh Columbia University New York, New York 10027

anđ

 $\sqrt{2E_{beam}}m_{particle}$ Available energy (with some caveats)

‡ Fermilab

Fermilab

And this brings us to colliders!

And this brings us to colliders!

All of the energy in both beams can be used!

$$\sqrt{s} = E_{beam1} + E_{beam2}$$

‡ Fermilab

‡Fermilab

Grace Cummings | TRAC 26 June, 2024

Circular v. Linear

Circular

- Recycle the beam
- Smaller footprint/more acceleration reps
- Need adjustable, strong magnets
- Synchrotron radiation

Linear

- One shot beam
- Fewer strong magnets
- No synchrotron radiation

Grace Cummings | TRAC 26 June, 2024

‡Fermilab

Hadron Colliders - natural for highest energies

Fermilab

‡ Fermilab

cooled to 1.9 K

Magnet tech ultimately limits energy reach! (in reasonable sized tunnels)

Fermilab

Don't actually get full energy of accelerated proton (Unknown initial state along direction motion)* important later Actually colliding quarks + gluons inside the protons - each carry a fraction of the total energy Lots of other crap in

the collision

🛟 Fermilab

Don't actually get full energy of accelerated proton

(Unknown initial state along direction motion)* important later

Actually colliding quarks + gluons inside the protons - each carry a fraction of the total energy Also collide bunches, so we get "pile-up" interactions from other particles in the bunch, but not interesting

> Pile-up interaction

Lots of other crap in the collision

Grace Cummings | TRAC 26 June, 2024

Primary interaction

The Large Hadron Collider

Fermilab

A~13 TeV Collider

- Final stage of the CERN accelerator chain
 - Largest energy achievable in LEP tunnel (26.7 km in circumference)
- 2, 6.8 TeV proton beams
- 4 collision points
 - 2 high luminosity collision points w/ general purpose detectors
 - 2 specialized detectors
- 25 ns bunch spacing

Fermilab

The CERN accelerator complex

General Purpose Experiments

Fermilab

General Purpose Experiments

The CMS Experiment at the LHC

‡Fermilab

Grace Cummings | TRAC 26 June, 2024

Experiment at the LHC, CERN ecorded: 2024-Apr-05 16:59:31.089344 GM Event / J.S. 378981 / 127041135 / 138

Compact Muon Solenoid Experiment

Fermilab

CMS at the LHC - Silicon Tracker

‡ Fermilab

CMS - Electromagnetic Calorimeter (ECAL)

‡ Fermilab

CMS - Hadron Calorimeter (HCAL)

‡Fermilab

CMS at the LHC - Superconducting Solenoid

‡ Fermilab

CMS at the LHC - Muon System and Flux Return

‡ Fermilab

CMS at the LHC - Trigger

Stairs to counting room

‡ Fermilab

Reconstructing particles

Reconstructing particles

Reconstructing particles

Measuring track radius gives a secondary measurement of momentum

> Combining complementary measurements improves resolution!

‡ Fermilab

‡ Fermilab

Jets

Quarks hadronize, forming lots of bound states as they shower!

jets → collections of hadrons and other particles grouped to reconstruct a quark – they have all subsystems!

‡ Fermilab

Relativistic Kinematics

‡Fermilab

Relativistic Kinematics

🛟 Fermilab

Relativistic Kinematics

beam!

‡ Fermilab

Final, sneaky object- Missing Transverse Momentum

- Momentum imbalance in the transverse plane of the detector
 - momentum carried away by invisible particles

‡ Fermilab

Physics at colliders

What makes a good scientific model

A good model must:

Collider physics

All of this can be made...

‡ Fermilab

Collider physics is probabilistic

All of this can be made...

... at any time!

Physics Menu

Standard Model Measurement

Fermilab

Physics Menu

Standard Model Measurement

‡ Fermilab

Grace Cummings | TRAC 26 June, 2024

Beyond the Standard Model

Search analysis – bare bones

🛟 Fermilab

‡ Fermilab

Search analysis – bare bones

‡ Fermilab

‡ Fermilab

‡ Fermilab

‡ Fermilab

Fermilab

Grace Cummings | TRAC 26 June, 2024

‡ Fermilab

Future colliders

Future colliders - Lepton Machines

Future Circular Collider e+e- (FCCee)

Muon Collider

arXiv:2203.08310

Fermilab

<u>2209.01318</u>

Actually colliding quarks + gluons inside the protons - each carry a fraction of the total energy

🛟 Fermilab

Benefits of lepton colliders!

Future Trackers

LHC needs silicon

Radiation tolerance and occupancy!

Ultra-light for best resolution

Muon collider probably needs silicon

Radiation tolerance and occupancy!

🛟 Fermilab

‡ Fermilab

Grace Cummings | TRAC 26 June, 2024

60

Summary

- Collider physics offers a wealth of possibilities
 - Varied and rich physics opportunities
 - SM Measurement
 - New physics reach
 - Diverse instrumentation requirements
 - High rate and radiation environments now
 - Precision environments in the future
- Collider design ultimately driven by outside factors
 - How much land can you buy
 - How strong of magnets can you build
 - How much energy can you afford
- Really at a turning point \rightarrow not sure what the future holds!

口Fermilab

back-up

