
Background
In the testing for the fddaq-v4.4.3 patch release, Wes noticed that 
the PDS part of the readout_type_scan automated integration test 
in the daqsystemtest package was failing.
• “Request timeout” warnings; empty fragments

This was triggered by the simple change of the number of 
DAPHNE frames per superchunk from 12 to 1 (link).
• This is in DAPHNE data, not DAPHNEStream data, so it only affects 

the internally-triggered PDS readout mode.

No problems were observed in the tests done with real 
electronics.

26-Jun-2024 PDS integtest woes | KAB1

https://github.com/DUNE-DAQ/fdreadoutlibs/pull/190/files


Investigation
In looking into the behavior of the integtest system with 12 frames-
per-superchunk vs. 1 frame-per-superchunk, I noticed that the 
timestamp difference between subsequent PDS data frames (in 
DAPHNEFrameProcessor) went from small (~25 usec) to really, really 
small (< 1 usec).
• Recall that many of our integtests use emulated data, in which 

data is read from reference files, timestamps are updated, etc.

I believe that the very slowly changing timestamp values in the ‘1 
frame per superchunk’ scenario is destructively interfering with 
idiosyncrasies in the TimestampEstimator to cause non-trivial 
mismatches between the trigger times (and readout window 
start/end times) and the timestamps of the data stored in the 
latency buffer.

26-Jun-2024 PDS integtest woes | KAB2



Idiosyncrasies of the TimestampEstimator
There are lots...  The two that I’ll mention today are the following:
1. It tries to account for delays in the transport of TimeSync 

messages by comparing the Linux system times (wallclock 
times) when each message was sent and received, and it uses 
that difference to correct the DUNE-time timestamps in the 
messages.

1. I hope that you can see the problem with combining two times that 
are changing at possibly very different rates…

2. There is a bug in our system configuration scripts that has the 
FakeHSI sending TimeSync messages to itself.

Taken together, these two features can cause DataRequest times 
to become progressively more out-of-step with the data times that 
are in the latency buffers.

26-Jun-2024 PDS integtest woes | KAB3



Mea culpa
Regarding these two idiosyncrasies of the TimestampEstimator…

I/we should have fixed or removed the message-transport-delay 
logic long ago, but I wanted to fully understand how it would affect 
various uses of the TimestampEstimator first, and I haven’t yet 
made time for that.

I should have fixed the sending of TimeSync messages from the 
FakeHSI long, long ago…

26-Jun-2024 PDS integtest woes | KAB4



What should we do for v4.4.4?
Anything?

Three small changes that help to get things working again:
1. Increase the daphne_time_tick_diff in FDFakeCardReader

1. Candidate change is here
2. It would be great to learn what value this variable should have, 

based on knowledge of the electronics
2. Ignore TimeSync messages from oneself

1. Candidate change is here
2. This isn’t as elegant as turning off these TimeSync messages in 

daqconf, but maybe it’s fine for now
3. Update the expected fragment sizes for PDS fragments in the 

readout_type_scan in response to change (1)

26-Jun-2024 PDS integtest woes | KAB5

https://github.com/DUNE-DAQ/fdreadoutmodules/blob/94e555473c2282e490ddd3fc82fad1789c506cf8/plugins/FDFakeCardReader.cpp
https://github.com/DUNE-DAQ/utilities/blob/9aae64d10f4cd8ce0357d8c6725f452e0bbbf30d/include/utilities/detail/TimestampEstimator.hxx


Other integtest notes
[Recall that one of the tricks that we play in the integtests is to use a WIBEth data 
file that has all zeros for the ADC values coupled with features in the 
SourceEmulatorModel class (e.g. here) that set a configurable fraction of the 
ADC values to large numbers so that they result in TPs being created.  In this 
way, we can tune the rate of TPs found in an emulated-data system.]

When our typical system configurations were changed to use one TP 
DataRequestHandler per APA plane (instead of one per all three planes), I 
noticed that there were occasional request-timeout warnings at the start of runs 
when TPG was enabled.  

I believe that this is simply because the random setting of high ADC values in the 
emulated data, and the resulting generation of TPs, needs a little time to produce 
TPs for all three planes.  Adding a 2-second delay between the start of a run and 
the enabling of triggers helped, so I have made that change in several integtest.

26-Jun-2024 PDS integtest woes | KAB6

https://github.com/DUNE-DAQ/readoutlibs/blob/95ea5830184aa95c54d31196d5975c7b9f03ad19/include/readoutlibs/models/detail/SourceEmulatorModel.hxx

