

Kevin Wood, for the ND-LAr Consortium July 26, 2024 DUNE Collaboration Call

Status of the DUNE ND-LAr 2x2 Demonstrator

Front right: Tom Murphy

Front left: Livio Calivers

BERKELEY LAB

2x2 Demonstrator for ND-LAr Design

ND-LAr: 7x5 array of 1x1x3 m³ LArTPC modules

2x2: 2x2 array of 0.6 x 0.6 x 1.2 m^3 LArTPC modules

2x2 Demonstrator for ND-LAr Design

The 2x2 Demonstrator

DEEP UNDERGROUND NEUTRINO EXPERIMENT

ND-LAr in a 1.2/1.8 MW LBNF Spill Simulation

The 2x2 Demonstrator

DUNE

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Coping with Pileup

ererer []

- LArTPC charge readout very slow compared to beam microstructure
 - ~300us maximum drift, ~10us beam spill
- Leverage scintillation light readout for timing information: must match charge to light

Coping with Pileup

- LArTPC charge readout very slow compared to beam microstructure
 - ~ ~300us maximum drift, ~10us beam spill
- Leverage scintillation light readout for timing information: must match charge to light
- \rightarrow enabled through optical segmentation

1/70th Detector Volume (no smearing)

-beam

The 2x2 Demonstrator

2x2 Demonstrator for ND-LAr Design

 7

2x2 Demonstrator Signal Detection

Charge readout:

- >330,000 pixel channels across 8 TPCs
- 4mm pixel pitch
- Self-triggering readout for every pixel
 - Configurable thresholds, ~100% uptime
- Scalable: commercially fabricated, fast and affordable

Light readout:

BERKELEY LAB

......

2 light collection technologies, common SiPM-based readout

	ArcLight	LCM
Efficiency	~0.2%	~0.6%
Spatial resolution	~5cm	~10cm
Notes	 Large sense area High dynamic range 	 Scalable design Mechanically robust

<10 ns single hit timing resolution

Laying the Groundwork

- 2014: idea for modular LArTPC was born and need for modular setup test with cosmic rays or neutrino beam identified
- 2016-2018: Preparations for the 2x2 cryostat and modules at University of Bern
- 2019: Agreements with FNAL/DOE, Lol, proposals, funding (Bern/FNAL/SLAC/LBNL)

Component Development

2019

BERKELEY LAB

 2016 - 2019 ArgonCube R&D Collaboration carried out a successful program developing, prototyping, and demonstrating LArTPC technology demonstrations:

2020

2021

- LCM and ArCLight dielectric light traps enabling high coverage scintillation light detection
- LArPix ASIC, integrated pixel PCB tile, PACMAN controller enabling pixelated charge readout
- High resistivity film as continuous resistive field cage enabling low-profile field cage
- Modular TPC design enabling optical segmentation
- _Operated SingleCube LArTPC in October 2020

2022

2024

2023

The 2x2 Demonstrator

• 2x2 module production and operations at University of Bern; gathered O(10⁸) cosmic events

• 2x2 module production and operations at University of Bern; gathered O(10⁸) cosmic events

250

Operations: *Apr. 1-10, 2021 Jun. 21-26, 2021* BERKELEY LAB Module 1

Operations: *Feb. 5-13, 2022*

Module 2

Operations: Nov. 14-22, 2022 Nov. 29-Dec. 6, 2022 The 2x2 Demonstrator

Module 3

Mar. 13-16, 2023

- 2x2 module production and operations at University of Bern; gathered O(10⁸) cosmic events
 - "Performance of a modular ton-scale pixel-readout liquid argon time projection chamber" (A.K.A. "The Module 0 Paper") <u>2403.03212</u>

Module 0

Facility Preparation

2019

 2x2 modules shipped from Bern to Fermilab and underwent acceptance testing, which concluded by Spring 2023

2020

2021

2022

- MINOS underground area prepared in 2023
 - Electrical services, ventilation for ODH mitigation, computing infrastructure, etc.
- October 2023: detectors installed into cryostat
- Installation of cryogenics, connecting readout electronics wrapping up when we lost access to the hall from March 19 - May 10 '24
 - Made some progress with control software, monitoring systems, DAQ development, operating procedures, control station, etc.

2023

2024

Cryogenic Commissioning

- Cryogenic commissioning
- May 20-31 cool down and LAr fill completed. 10 days instead of anticipated 4 weeks due to support from partners in LAr procurement
 - Bern, MIT, U-Chicago, LBNL
- Challenges:
 - Leaks \rightarrow maintain LAr level
 - Purity → single pass LAr top offs degrade LAr purity
 - Malfunctioning cold head (1/3)
 - \rightarrow limited cooling power

- Gas makeup system \rightarrow degrading pump performance
- Inlet tube from ullage to condenser located low → tight level requirements
- Capacitive level meter inoperable while recirculation pump powered

- Ramped up cathode voltage to half nominal on June 11, 2024 for a 1-day HV commissioning test
- LAr purity was very poor (~O(10) μs e⁻ lifetime) and LAr level was not being maintained (intentionally)
 - Started seeing some sign of micro-discharge in light system around half-nominal (250 V/cm)
 - Ramped down, analyze data, and spent ~3 weeks working on cryo

Evidence of NuMI signals from the light detection system:

HVRampTest : 2024 – 06 – 11

2021

2022

Cryogenic System Fixes

2020

Regenerate LAr purifier

2019

BERKELEY LAB

- Fix leak in LAr purifier vessel
- Install additional cold head
- Implement alternative readout of level meter
- Install O2 getters inline with the gas makeup
- Huge thanks to Mike Zuckerbrot and Brandon Howe! •

2023

204

Achieving Target Operating Conditions

BERKELEY LAB

Low Purity (Anti)Neutrino Data

High Purity (Anti)Neutrino Data!

~ 10K interactions in active LAr volume per day

High Purity (Anti)Neutrino Data!

Event 1265: 2024-07-11 19:52:24 UTC DEEP UNDERGROUND

And more!

- Continuously taking data from cosmic and low energy events in addition to beam
 - Particularly useful for calibrations
 - Cosmic rates comparable to beam spill rate
 - Low energy depends on thresholds, but ~10-100x higher rates
- Example: low energy event selection, Sam Fogarty (CSU)

Next Steps

Analyze the beautiful data we have gathered!

- Reach out to Zoya Vallari and Pedro Ochoa-Ricoux to get plugged into analyzing DUNE's first neutrinos!
 - ND Prototypes Analysis WG
 - <u>dune-physics-nd-proto-analysis@fnal.gov</u>
 - #nd_prototype_analysis on Slack

Prepare to gather more!

- Task force assembled to plan hardware upgrades during the summer shutdown
- Off-beam runs to gather additional cosmics, low energy decays, etc.
- Learn more about future NuMI runs in the coming weeks

FY25 -	FY26	16+16 weeks	24+24 weeks	40+40 weeks
0п ^о	1⊓±	26320	39760	66080
	2π [±]	6683	10096	16780
	Зп±	1457	2201	3658
1п ⁰	1⊓±	1673	2528	4201
	2π [±]	458	692	1149
	Зп [±]	100	151	250

Predicted exclusive event rates for various NuMI running scenarios

The 2x2 Demonstrator

Thanks!

The 2x2 Demonstrator

Back Ups

The 2x2 Demonstrator

ND-LAr Detector

- 7x5 grid of 1x1x3 m³ LArTPC modules
 - 7x5x3 m³ active volume
- Moveable transverse to neutrino beam
 - Sample off-axis flux
- Designed to cope with high-pileup environment
 - ~60 interactions / 1.2 MW spill
- Optical segmentation provides interaction-level timing information
- Native 3D readout from pixelated charge readout mitigates hit ambiguity
 - \lesssim 4mm pixel pitch (granularity)
 - > 14M pixel channels!

ND-LAr Module

- 2 optically isolated TPCs per module
 - 50 cm drifts → 25 kV for 500 V/cm
- Pixelated charge readout with O(4mm) granularity
- Light readout with modules on the vertical field cage panels

