NP04 Status Update

People at CERN this week: Renan, Julio, Anna, Anselmo, Michaela and Manuel

04/07/2024

NP04 PDS data taking plan

TASK LIST

RECO TEAM

•	Data taking optimization \rightarrow General DAQ JSON	\checkmark
•	Take data with all subsystems (during beam time)	\checkmark
•	DAQ duplication problem solved (daq trigger set max to 20Hz)	\checkmark
•	WAFFLES first release	

<u></u>	
•	SPE Calibration of all channels
	 Analyse the runs and fine-tune the last parameters
	◦ Ad-hoc trigger in APA1 for LED tuning
	 Full-streaming channels calibration
	\circ Take calibration runs with final configuration (3 OV)
	\circ SPE template for 160 channels (once gain is equalized)
•	Data Deconvolution
•	Trigger rate
out	TPUT FOR

Summary

During the last couple of weeks we encountered multiple problems:

- Specific values for **Threshold** configuration were freezing DAPHNE
- Readout and trigger Performance was below expectations
- We saw significative differences in the **gain** of different modules
- We didn't had the tools to track specific events in the data and correlate with other systems.
- → We understood and we improved/solved all of them.
- \rightarrow We are able to trigger at **2PE** without errors at the DAQ level.
- → We have increased the amount of healthy paquets bringing the errors to cero.
- → The multilink for the self trigger is still an option, but <u>less critical than before</u>.

Online monitoring

Tool for check that the data we are acquiring is $ok \rightarrow DQM plots + Shifter checking list$ (Thanks Renan!)

9 9 9 9 9 9 9 9 9 9 9

DQM Plots used during the first beam week:

RMS Run run027326, Trigger 0070, 2024-06-20 15:27:38+02:00 (CERN)

Updates for the next beam:

- Problematic channels were removed;
- Implementation of another heat map, to monitor the maximum amplitude of the mean waveform in each channel:

Deconvolution

- Method:

- 1. Compute one template per channel \rightarrow Average waveform of multiple p.e on the s.p.e scale;
- 2. Deconvolution: ratio between the ffts of the signal and the template;
- 3. Application of the gaussian filter for a better result and computation of the inverse fft;
- 4. Fit model (under testing):

$$fit = \frac{A_S}{\sqrt{2}} e^{\frac{\sigma^2}{2\tau_S}} \operatorname{Erfc}\left(\frac{t-t_0}{\sigma} + \frac{\sigma}{\tau_S}\right) e^{\frac{t-t_0}{\tau_S}} + \frac{A_I}{\sqrt{2}} e^{\frac{\sigma^2}{2\tau_I}} \operatorname{Erfc}\left(\frac{t-t_0}{\sigma} + \frac{\sigma}{\tau_I}\right) e^{\frac{t-t_0}{\tau_I}} + \frac{A_F}{\sqrt{2}} e^{\frac{\sigma^2}{2\tau_F}} \operatorname{Erfc}\left(\frac{t-t_0}{\sigma} + \frac{\sigma}{\tau_F}\right) e^{\frac{t-t_0}{\tau_F}}$$

- Example: 2 records of run 026071: endpoint 111 and channel 45 \rightarrow Cosmics

^{**} Black: result from the deconvolution process; blue: fitting

- Next steps:

- 1. Define the template of each channel;
- 2. Finish the method validation;
- 3. Implement the method on WAFFLES

Thanks Renan!

Trigger rate

- Beam run 27373 (22. 06. 2024) :
 - APA1 3.69 GBps
 - APA2 0.43 GBps
 - APA3 0.80 GBps
 - APA4 0.75 GBps
- Beam run 27412 (25.06. 2024):
 - APA1 3.69 GBps
 - APA2 0.44 GBps (↑ 0.01 GBps)
 - APA3 0.82 GBps (↑ 0.02 GBps)
 - APA4 0.77 GBps (↑ 0.02 GBps)
- NON-beam run 27568 (30.06. 2024):
 - APA2 1.69 GBps (↑ 1.25 GBps)
 - APA3 1.69 GBps (↑ 0.87 GBps)
 - APA4 1.69 GBps († 0.92 GBps)

SPE Calibration

Details on how to turn the LEDs for calibrating \rightarrow <u>here</u>

Based on the results which were presented on <u>20/06 NP04 PDS operation</u> <u>meeting</u>, the following runs were taken for APAs 3 and 4

	Calibration Runs for APAs 3, 4							
27562	30/06/2024	120s	marroyav	111,112,113	LED	Calibration Run. Bias DCS:30V. Tests 270nm: SSP_config. pulse_mode:single, mask_channel:1, ticks_width:1, Pulse_bias_percent_270nm:1400. Trigger_ad-hoc 0x7:6250Hz. 20Hz daq triger_rate.		
27563	30/06/2024	120s	marroyav	111,112,113	LED	1600		
27564	30/06/2024	120s	marroyav	111,112,113	LED	1800		
27565	30/06/2024	120s	marroyav	111,112,113	LED	2000		
27566	30/06/2024	120s	marroyav	111,112,113	LED	1400 Mask 12		
27567	30/06/2024	120s	marroyav	111,112,113	LED	1600 mask 12		
27568	30/06/2024	120s	marroyav	111,112,113	LED	1800 mask 12		
27569	30/06/2024	120s	marroyav	111,112,113	LED	2000 mask 12		

Thanks Julio!

PERSISTENCE PLOTSCHARGE HISTOGRAMS + FIT

APA 3 - Runs 27562-27565, 27567, 27569

APA 3 - Runs 27562-27565, 27567, 27569

PRELIMINARY

Thanks Julio!

Gain = $\mu_1 - \mu_0$

$$SN_C = \frac{\text{Gain}}{\sqrt{\sigma_0^2 + \sigma_{1st}^2}}$$

CHARACTERIZATION FROM FIT RESULTS (PER CHANNEL)

Gain per channel in APA 3 (Runs 27562-27565, 27567, 27569)

Average baseline per channel in APA 3 (Runs 27562-27565, 27567, 27569)

Channel

PERSISTENCE PLOTSCHARGE HISTOGRAMS + FIT

APA 4 - Runs 27562-27565

APA 4 - Runs 27562-27565

PRELIMINARY

Thanks Julio!

Gain per channel in APA 4 (Runs 27562-27565)

Gain –
$$\mu_1 - \mu_0$$

Cain

$$SN_C = \frac{\text{Gain}}{\sqrt{\sigma_0^2 + \sigma_{1st}^2}}$$

~

Average baseline per channel in APA 3 (Runs 27562-27565, 27567, 27569)

Channel

SPE Calibration

The format of the entries for these tables is (channel_mask, pulse_bias_percent_270nm). Channels which have a 'N-' are noisy channels. Some of them include a guess of what light intensity would allow a calibration in case they were not noisy.

APA1					APA2				
	Ongoing work				Ongoing work				
4042					4844				
> (12 2000)	> (12 2000)	> (12, 2000)	(12, 2000)		(1, 2000)	(1, 2000)	(1, 2000)	(1, 2000)	
(12, 1600)	(1, 2000)	(1, 2000)	N - (1, 2000)		(1, 2000)	(1, 2000)	(1, 2000)	(1, 2000)	
(1, 2000)	(1, 1800)	(1, 1800)	(1, 1800)		(1, 1800)	(1, 1800)	(1, 2000)	(1, 2000)	
(1, 1800)	(1, 1600)	(1, 1600)	(1, 1600)		(1, 1600)	(1, 1800)	(1, 1800)	(1, 2000)	
(1, 1800)	(1, 1600)	(1, 1400)	(1, 1400)		N	N	N	N	
(1, 1600)	(1, 1600)	(1, 1400)	(1, 1400)		(1, 1400)	(1, 1400)	N - (1, 1400)	(1, 1600)	
(1, 1600)	(1, 1600)	N - (1, 1400)	(1, 1400)		(1, 1400)	(1, 1400)	(1, 1600)	(1, 1800)	
(1, 1600)	(1, 1600)	(1, 1400)	(1, 1400)		(1, 1400)	(1, 1400)	(1, 1600)	(1, 1800)	
(1, 1600)	(1, 1600)	(1, 1400)	(1, 1400)		(12, 1400) - (1, 1400)	N - (1, 1400)	(1, 1600)	(1, 1800)	
(1, 1800)	(1, 1800)	(1, 1800)	(1, 1600)		(1, 1600)	(1, 1600)	(1, 1800)	(1, 1800)	

Laser tests

- There is a plan to use Ionization laser for PDS calibration purposes: i.e. light yield map
 - 1064 nm class4 laser with main harmonics at 532 and 266 nm.
 - 266 nm light is the one used to create an artificial ionization track
 - 1064 nm light is minimized with proper band pass filters.
 - 532 nm is kept with a dual band pass filter since a class three green laser is used for alignment purposes
- Yesterday the first tests were done (many thanks to David, Jose and Wallison)
 - Class4 laser at minimum intensity pulsed at 10 Hz
 - Class3 green laser to understand effect of 532 harmonic

individual channels in APA4

• Too much light even at minimum intensity

• This is expected to be due to scattering of the initial laser light, NOT scintillation light

• Which harmonic is producing that PDS signal: 266 or 532 ? \rightarrow Are we sensitive to 532 light \rightarrow Test it with green laser

LASER

NO LASER

Class 4 laser coincidences

Class 3 laser waveforms

- Continues (no pulsed) light with much lower intensity
- PDS sees that light
- Next step will be to filter out the green light with the proper band pass filter
- Not obvious we can use IoL for the PDS but will keep trying !!!!!

Thanks David!

Last data from Jul-02-2024

We noticed some strange behaviour in many channels :

Bump in the region where we're searching for Vbd \downarrow Impossible to find the right Vbd

Last data from Jul-02-2024

We noticed two strange behaviour in many channels :

ENDPOINT:111 APA:3 AFE:4 Config_CH:33 DAQ_CH:41 SiPM:HPK

Last data from Jul-02-2024

We noticed some strange behaviour in many channels :

Extremely noisy IV curve \rightarrow Vbd can't be determined

This results in un under/over estimation of the breakdown!!

For example:

It is extremely important to <u>check IV plots</u> and <u>compare results</u> of different runs, to establish if a run is good or not!

To help to do this, I created a new script **Vbd_quality.py**.

It compares Vbd of a given run with the previous good runs results and it returns a list of comments about the data. For example :

- if a channel is always NaN
- if a channel was always NaN but now has a value and viceversa
- if a channel sometimes was NaN
- if the absolute difference between the current Vbd value and the mean value of previous runs is larger than a certain threshold (for example 250mV)

It also creates an histogram of the difference between Vbd and the mean value!

Next steps:

- Vbd comparison with CACTUS data (Alessandro is working on it ?)
- Define when change Vop configuration
- (Maybe) create a map with Vop taking into account Vbd mean value (of good runs), since Vbd is fluctuation by some hundreds of mV

Plans until next wednesday

- Next wednesday beam is resumed
- Few details in the firmware to be debugged:
 - Counters for daq statistics were added (Carlos) and there are problems in some of them. New version being tested NOW (Marco Roda)
 - Those counters will be used to understand why we have half bandwidth in self trigger APAs
- Need to take again the APA1 and APA2 calibration runs (tomorrow)
- Apart of this, focus on the analysis:
 - Look at previous beam data (although very inhomogeneous gain)
 - Gain calibrations
 - Redo tau slow analysis with newer runs
 - Start with Bi source analysis

Duplications

Duplication problem solved by DAQ team in the new environment release (we do not see more repeated waveforms from ~10 June)

