

Wei Shi, Stony Brook University **CPAD Community Meeting** July 29, 2024

FOR THE REALZATION OF A

DELTA - <u>D</u>igital <u>End-to-end Light Trap</u> <u>Assembly</u> for the realization of a new generation class of photon detectors

- Proposed mainly under RDC2 photodetectors
- Motivation
 - Emerging technologies in many fields
 - Microelectronics, photonics, material science...
 - A next-generation photodetector can build on these emerging technologies
 - Broad applications in HEP, NP, medical, security...
 - Versatility
 - Large-scale (fast, cost-effective) industrialized production
 - Harsh environments: rad-hard/HV/cryogenics
 - Low-background experiment

Light Trap Based Photodetector

- Single (multi)-stage wavelength shifting + dichroic filter for light trapping
 - An example: 127 nm \rightarrow 350 nm \rightarrow 430 nm \rightarrow SiPM
- Still a very young technology
 - Foresee many potentials once fully developed
- **Compact device**
 - Save space for more detector fiducial volume
 - Easy to scale up for large area coverage

DELTA - <u>D</u>igital <u>End-to-end Light Trap Assembly</u> for the realization of a new generation class of photon detectors

- Proposed mainly under RDC2 photodetectors
- Overarching R&D goal
 - Prototype a class of next-generation fully packaged digital photodetectors based on light trapping mechanism
 - Large-area photo-collector: traps light inside
 - Small area photosensor optically coupled
 - On-board fast signal processing and digitization
 - Laser photonics for power & signal transmission

DELTA Institutions

- US:
 - Stony Brook University: C. Jung, W. Shi, C. Riccio
 - **SDSMT**: D. Martinez, B. Behera
 - Fermilab: F. Cavanna, W. Pellico, P. Rubinov
 - UC Santa Cruz: Shiva Abbaszadeh
- Non-US:
 - APC Laboratoire Astroparticules et Cosmologie (Paris, France): S. Sacerdoti
 - IFIC (Valencia, Spain): A. Cervera
 - ITA UFABC (São Paulo, Brazil): F. Marinho, L. Paulucci

UC SANTA CRUZ

- for best photoresponse in different incident wavelength ranges depending on the targeted application.
 - Stony Brook University: C. Jung, W. Shi, C. Riccio
 - IFIC (Valencia, Spain): A. Cervera
 - ITA UFABC (São Paulo, Brazil): F. Marinho, L. Paulucci

• Materials search, selection, and development for photo-collectors with enhanced trapping capabilities. Optical properties at the surface and the bulk of different composites, thin film deposits, and chromophore dilutions will be tuned

- material.
 - Fermilab: F. Cavanna, W. Pellico, P. Rubinov
 - IFIC (Valencia, Spain): A. Cervera

DELTA **R&D Thrust 2**

• Solid state photo-sensor selection and dedicated development of optimal optical interface with photo-collector

DELTA R&D Thrust 3a & 3b

- optimized photon counting or best timing resolution depending on the targeted application.
 - APC Laboratoire Astroparticules et Cosmologie (Paris, France): S. Sacerdoti
 - (other Institutions are interested TBC)
- **SiPM solutions** (dSiPM, 3D-dSiPM) in photon detectors for HEP.
 - Fermilab: F. Cavanna, W. Pellico, P. Rubinov
 - (other Institutions are interested TBC)

• 3a: Microelectronics for analog signal processing and transmission - dedicate CMOS with integrated photonics - with

• 3b: Microelectronics for analog signal processing and **digitization** - support to development and integration of **digital** ~32 mm

DELTA **R&D Thrust 4**

- and digital signal high bandwidth transmission via optical fibers.
 - **SDSMT**: D. Martinez, B. Behera
 - Stony Brook University: C. Jung, W. Shi, C. Riccio

Si InGaP A GaSb Single junction • T = 298K InGaAs InGaAsP 70 w/ thin-film & back surface reflector 60 <u>گ</u> 50 Efficiency (30 20 10⁰ 10^{-1} 10¹ Power density (W/cm²)

• Laser photonics technology development/customization and implementation for noise immune power transmission

GaAs or GaAs/AlGaAs

÷ 1
i l
×
5 -
2
÷ 1
× .
Χ.
5
S
6 - - -
5 I
2
÷ 1
÷ 1
Χ
5 1
0 I
2 I
1 I
×
Χ
é a se
S
Q
10 H
÷
Χ.
×
S
0 H
9 I
× .
5 I
2
÷.
10 m
8
5 I
÷ 1
× .
5
이 님
а п
÷ .
×
8
5 I
÷ 1
÷ .
1.1
÷ .
8
8
000
000000

- within **CPAD**
- Components live in multiple RDC's
 - RDC2 Photodetectors
 - RDC4 Readout and ASICs
 - RDC1 Noble Element Detectors
 - •
- and laboratories who are active in the specific technology areas outlined in the Δ <u>R&D Thrusts</u>.

DELTA **Overlap with RDCs**

• Δ is a multi-institutional proposal conceived to foster the formation of an *RDC2 Photodetector (PD) Collaboration*

• Δ is open and welcoming the joining of interested groups across national and international university communities

DELTA **Timeline and Deliverables**

- Propose a 3-year funding period: **2025-2028**
- Year 1 (2025-2026):
 - methods and material coating techniques for reflectors, dichroic films, WLS films,...
 - connection with industrial partners
 - Support the development of **digital SiPM** solutions
 - Search, and develop with industrial partners of (Laser) Photonics instrumentation in photon detection

 Search, selection, and development of different photo-collector materials with enhanced trapping capabilities wavelength shifting (WLS) materials and composition, exploration and development of different film deposition

Dedicated development of optimal optical interface photo-sensor to photo-collector material - development

DELTA **Timeline and Deliverables**

- Propose a 3-year funding period: **2025-2028**
- Year 2 (2026-2027):

 - Develop test facilities for detector performance characterization
 - Continue material (photo-collector) development and photo-sensor read-out electronics

• Integration of selected detector components into first prototyping. Simulate response in full-scale detectors

DELTA Timeline and Deliverables

- Propose a 3-year funding period: 2025-2028
- Year 3 (2027-2028):
 - Implementation of (Laser) Photonics instrumentation in photon detection
 - Integration of selected detector components into end-to-end Δ prototype
 - Characterization in test facilities

tion in photon detection d-to-end Δ prototype

The End FOR THE REALIZATION OF A

