Physics Backgrounds at the Muon Collider

Alexander Conway aconway@fnal.gov

Physics Backgrounds at the Muon Collider

- Identify backgrounds
 - What can we eliminate?
 - Compare background event characteristics
 - Dijet momenta and opening angle
 - Thrust
 - Estimate Higgs signal to background ratio
 - Branching fractions
- Search strategy
 - Simple model using estimated parameters
 - Luminosity required to find Higgs

- The dominant physics background near Higgs mass is the production of Z bosons.
 - 9x Higgs peak cross section
 - Essentially flat around peak

 $\mu \mu \rightarrow Z/gamma^* + Higgs cross section$

- Two Z production modes at MC
 - Real Z: 71%
 - mu+mu- --> Z/gamma*
 - Virtual Z: 29%
 - mu+mu- --> Z*
- Real Z produced with gamma has normal Z mass, high energy gamma
- Most virtual Z*'s have beam CoM
- Simple cut on presence of a single 20+GeV gamma distinguishes the two processes noticeably
 - gamma is colinear with beam, might avoid detection

Z/gamma vs Z* Masses (Cut on 20+GeV Gamma in Event)

Z/Z* Boson Masses 124.9 GeV Cut

- 124.9GeV cut reveals
 - 71% Z/gamma*
 - **29% Z***
 - Using this cut from here on out
- How well can they be separated?
 - Gamma is colinear to beam
 - \circ Z decay is boosted relative to Z* (Z* is at rest)
 - Z has lower mass
 - Compare dijet decays
 - Compare event shapes
- How well can Z* be separated from Higgs?
 - Depends on how well we can eliminate Z*'s with mass < CoM Energy
 - Branching ratios
 - b-tagging
 - WW?

Z/gamma* vs. Z* Dijet (Z->q-qbar) Decays **Quark Momenta and angle between quarks** Z*->qq: q Momenta

Z/gamma* -> q-qbar: q Momenta

Z - gamma* Correlation

 High correlation between gamma energy and Z invariant mass in Z/gamma* events:

Z/gamma*: Energy-Mass correlation

Z* vs. Higgs

Jet Momenta and Dijet Opening Angle

Essentially identical, except for branching ratios.

Event Shape - Thrust

- The **Thrust Axis** is defined as the axis for which summing the projection of all final state particle momenta gives the greatest value.
 - Thrust is calculated as the normalized sum of particle momenta projected on the Thrust Axis
- The Major Axis is the axis perpendicular to the Thrust Axis with the highest projection of particle momenta
 - Major Axis magnitude is the normalized sum of particle momenta projected on the Major Axis
- The Minor Axis is perpendicular to the plane defined by the Thrust and Major Axes
- These parameters can show how dijet or
 three-iet-like an event is

Event Shape - Thrust

Z*

Higgs

Z+gamma*

Background vs. Higgs Cos(theta)

Large cone will affect background more than signal

Z/gamma* vs. Z* Dijet (Z->q-qbar) Decays

- Thrust distribution appears to differ between Higgs and Z*
 - Due to differing branching ratios.
- Need jet reconstruction for better estimation of realistic separation.
 - 124.9GeV cut on boson gives 29% Z* to 71%
 Z/gamma*
- Cutting on Dijet momentum and opening angle between jets can be very effective.
- Higgs and Z* events mostly differ in branching ratios.
 - b-tagging will be important.
 - W+W-

PYTHIA 6.4 Branching Fractions

Decay Channel	Z* Branching Fraction	Higgs Branching Fraction	
Light quarks (uds)	0.427	0.0003	
c-cbar	0.119	0.032	
b-bbar	0.152	0.584	
e-e+	0.034		
mu-mu+	0.034		
tau-tau+	0.034	0.071	
gamma gamma		0.003	
W+W-		0.226	

Physics Backgrounds: b-tagging (preliminary)

- s/b is 0.11 when just counting events.
- Perfectly removing Z/gamma* events removes 71% of background, no signal.
- Perfect b-tagging retains 58% of signal, 15% of background.

	Background (pb)	Higgs signal at peak (pb)	s/b
Basic counting:	376	42.5	0.11
Z/gamma* tag:	113	42.5	0.38
b-tagging:	56.4	24.8	0.44
Combined:	16.9	24.8	1.47

Search Strategy Implications

- Find α, probability of not seeing a signal with significance p-value p when on peak
 - Find N s.t. p < cl confidence level given background rate b times integrated luminosity

$$p = \int_N^\infty Pr(X = n | \mathcal{L} \times b) \ dn$$

 α is the probability of not seeing more than N given background + signal rate times integrate luminosity

$$lpha = \int_0^N Pr(X = n | \mathcal{L} \times (s + b)) dn$$

Search Strategy Implications

- Use Poisson distribution to calculate probabilities with L*s and L*(s+b) as mean.
- Use confidence level = $5\sigma = 5.7e-7$
- Use b = background cross section
 - For b-bbar, b = 16.9pb

• For WW*, b = 0.1pb

- Use s = Integral of Higgs peak times branching fraction times on-peak beam gaussian
 - beam width = σ
- Calculate α as a function of luminosity
- Conduct search for Higgs using hypothetical *a priori* info from LHC as guide.

M=126.0GeV, Γ=0.1GeV

Search Strategy Implications

Single Experiment

W+W-Assuming 0.1pb Background

- Low background reduces luminosity requirements.
- Beam width makes less difference.

WW* Assuming 0.1pb Background

Thoughts/Future

- Z* background events with beam CoM mass are indistinguishable from signal, but branching ratios reduce background dramatically in some channels
- Search and simulation:
 - Do fits on simulation data
 - Simulate search for randomly located peaks
 - Improve search with joint probabilities for bbbar/WW*
- Do real b-tagging for better estimates on background
- Study WW* more closely
 - Tagging efficiency, possible backgrounds for each tag.