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Goal:
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Building a detector system to measure time with high precision requires 
all the elements of the system to work with even higher precision. 

Each of the separate elements of a system need to be optimized for this 
purpose. 

We include the signal source, the photodetector, the front-end amplifier, 
the TDC and the clock reference distribution.  

Each of these will need to operate with high precision across a detector 
for the system to achieve the optimum performance. 

σt = σck ⊕ σdigi ⊕ σele ⊕ σphot ⊕ σdark



State of the Art
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CMS and ATLAS Mip Timing Detectors:

CMS barrel detector: 
o Short LYSO crystals readout at both ends with 

4 mm2 SiPMs —  .     

Endcap detector:  
o Low Gain Avalanche detectors.  Large area 

silicon diodes with impact ionization at the p-
n junction — 

σt ≈ 30ps

σt ≈ 40ps



HGCAL prototype — Timing in electron showers
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Difference due to jitter in the 
time from the reference MCP

Precision derived from difference in 
signal times in two halves of the detector.
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Cherenkov Radiation
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A truly prompt signal is Cherenkov Radiation.

Quartz (silica) is a low-cost material with an index of 
1.46 and good transmission in the UV.

Cherenkov threshold is 0.68c

Electrons: 161 keV 
Muons: 33 MeV  
Protons: 296 MeV 
Kaons: 155 MeV 
Pions: 44 MeV. 



Cherenkov Signal
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Number of photons per unit length is given by:

Or:
For silica with ,  = 0.8 radians.β = 1 θc

For a particle with  = 1 the number of photons produced in a 5mm 
quartz rod with a wavelength between 200 and 600 nm is 400.

β

 is the fine structure constant.α

cos θc =
1

βn



Radiator
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High purity fused silica has an index of 1.46 is transmissive in the UV.

250 nm 1µm 2µm

Dispersion in the arrival time of the photons:  Δtmax =
d
cβ

(β2n2 − 1)
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High purity fused silica has an index of 1.46 is transmissive in the UV.

250 nm 1µm 2µm

Dispersion in the arrival time of the photons:  Δtmax =
d
cβ

(β2n2 − 1)

For  = 1, d = 5 mm, n = 1.46,   
~400 photons arrive at end of rod in interval of 19 ps 

β

There is a trade off between the index and the thickness and 
number of photons and the signal dispersion



Detector Concept
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Hexagonal stack of 5 mm long 
quartz rods read out by SiPMs.

Readout using a high precision TDC vernier 
phase delay or time difference amplifier



Test in a beam:
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Two detector matrices use to detect 
decay products in a beam line. 

Could use πo-decays K-decays to get simultaneous signal.

Could use two single-channel detectors in sequence in a beam line.



Photodetector:
• SiPMs 
• Low cost, well understood technology 
• Dispersion of signal due to low-filed region at the surface. 

• LAPDs 
• Cost/mm2  

• Dispersion in signal due to variations in phot-electron path length 
and signal formation in the micro channels. 

• SNSPDs 
• Ultra fast cryogenic devices.  
• Large area?  
• Is there a trade-off with signal dispersion?

No obvious solution — requires investigation



TDC:
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Assume we will use SiPMs.  

Vernier TCDs 

Two Stage Time Interpolation

TWEPP 2019              
04.09.2019

1.28GHz 12.2ps delay

3.05ps delay

Phase
Adjustment

32 steps each with
0.6ps resolution

Moritz Horstmann - picoTDC 7

CAEN A5203

Calibration between 
devices and linearity.

https://www.caen.it/products/a5203/


TDC — Time Difference Amplifier
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Paper link

MUTEX circuit that exploits metastability 
of an SR latch. 

Interesting circuit that includes 
feedback in the SR latch to 
achieve linearity of TDC gain.

Othe options:  Optical circuitry?

https://www.google.com/url?q=https://cmosedu.com/jbaker/papers/2016/A_Linear_High_Gain_Time_Difference_Amplifier_Using_Feedback_Gain_Control.pdf&source=gmail-imap&ust=1721075484000000&usg=AOvVaw3DvOeTLXWUpJbmVDl4Bece


Clock Stabilization
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Use clock with phase stabilization using DDMTD and DCPS ASIC
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Questions:
• Best material: 
•  What is the best material large value of n or low value?   
• Optimum geometry to minimize the optical dispersion. 

• Best photodetector 
• Optimize for low latency, signal size and low dark count rate.  
• Is it feasible to use SNSPDs 
• Cryogenics? 

• Readout: 
• Design of front-end preamp. 

• Digitization: 
• Can we do better than 3 ps digitization? 
• Rad tolerant PLL with sub-picosecond jitter.

Potential to collaborate with multiple RDCs (and DRDs) - we would 
welcome new groups interested in any, or all of these questions. 



Backup:
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Beam Halo Monitor in CMS


