smartpixels demonstrator testbeam proposal

Jennet Dickinson, Karri DiPetrillo, **corrinne mills** and the smartpixels team

July 11, 2024

What are smartpixels?

- Cluster shape contains information about the particle trajectory
- Can be used to infer transverse momentum or regress track angles, given sufficiently granular pixels
- Read out cluster information
 → data reduction
- Two strategies

ERSITY OF

NOIS

CAGO

- → Filter: reject tracks with low (< 200 MeV) pT</p>
- → Regression: infer track position and angles

$$\cos\left(\beta + \arctan\left(\frac{y_0}{R}\right)\right) = \frac{qRB}{2p_T}$$

Snapshot: p_T filter

p_T filter with full precision inputs

- Full precision network:
 - 1. Projected cluster size only. Minimal information
 - 2. Projected cluster shape, integrated over 4ns. Selected for implementation
 - Projected cluster shape at 8 200ps time points.
 5-10% gain in signal efficiency
- Signal efficiency

How much of the $p_T > 2$ GeV sample do we keep?

Background rejection

How much of the $p_T < 2$ GeV sample do we discard?

12/06/2023 Jennet Dickinson | Smart Pixels

Model	Sig. efficiency	Bkg. rejection
Model 1	84.8~%	26.6~%
Model 2	93.3~%	25.1~%
Model 3	97.6~%	21.7~%

25

ERSITYO

SIONI

https://arxiv.org/abs/2310.02474

辈 Fermilab

Snapshot: parameter regression

c. mills

Requirements and deliverables

- We will need to:
 - \rightarrow Integrate DAQ with the telescope DAQ including ability to take triggers
 - "Traditional" pixel readout in addition to cluster-based readout
 - \rightarrow Build support structures for devices, eventually with cooling
 - \rightarrow Set up analysis for measurements below

Deliverables

RSITY OF

AGO

- \rightarrow Bump bond sensors to smartpixels ASICs
- → Measure standard efficiency, cluster shape and charge, position resolution
- \rightarrow Measure track rejection vs angle for filter algorithm
 - Different angles correspond to different momenta at different positions on the device
- \rightarrow Measure parameter resolution for regression algorithm
- → Stretch goal: irradiate at FNAL or LANL and characterize impact on performance

Context and current work

- ASIC development
 - → 5x5 mm² chip under development, will tentatively include several algorithm options in separate areas, RD53A-style
- Test beam options depend on the timing of the chip
 - \rightarrow FTBF (120 GeV protons) currently scheduled to shut down end 2026
 - \rightarrow CERN North area (200-400 GeV protons) also shutdown 2026 late 2028
 - → DESY (electron beam) operation foreseen until at least 2030 (electron beam)
 - Need to understand access options for US groups for DESY or CERN
- Algorithm development so far assuming 100 μ m thick planar silicon devices, 12.5 x 50 μ m² pixels, assume n-in-p
 - → Work ongoing using simulation to estimate how the performance depends on pixel pitch & sensor depth
- In the coming months:

ERSITY OF

AGO

- \rightarrow Use TCAD and pixelAV simulations to determine sensor geometry
- \rightarrow Discussion with external partners (BNL, SLAC) about sensors

Connection to RDC3/4

- RDC3: evolution of pixels towards thinner wafers and finer pitch
 - → Pixel detector finer-pitch than Phase 2 standard, close to limit of what can be bump bonded
- RDC4: testing a new ASIC
 - → Validation of algorithm performance by simulating different momenta and impact positions using beam angle and using trained weights for different impact point (y_0)

Schedule

- Year 1
 - \rightarrow Sensor fabrication and bump-bonding
 - \rightarrow Request 2 separate 2-week blocks of beam
 - Block 1: establish basic operations, commission DAQ, take data for first analysis
 - Block 2: systematic characterization of filter and regression algorithms
 - → Feed back performance information and concerns to ASIC and algorithm teams
- Year 2
 - \rightarrow Complete analysis and publication of Year 1 data
 - \rightarrow Hybridization of updated ASIC
 - → Measurement program (similar to year 1) with updated ASIC (new algorithms, analog options, etc)
 - Year 3

ERSITY OF

CAGO

- \rightarrow Irradiation (stretch goal)
- \rightarrow Complete analysis and publications

Funding and teams

- Subset of broader *smartpixels* effort
- Each participating group has specific areas of expertise and interest and cross-cutting interests. These areas are, by topic:
 - \rightarrow Smart pixels algorithm U. Chicago, Cornell, UIC, Fermilab
 - \rightarrow Silicon sensor simulation and characterization UIC
 - \rightarrow Test beam operations and analysis UIC, Cornell, U. Chicago
 - → Electronics/DAQ U. Chicago, Fermilab

RSITY OF

- Most smartpixels funding coming from AI/ML and ASIC development
 - → "handshake" between that funding to provide an ASIC compatible with being bump-bonded, and for us to design a sensor that works with the ASIC
- Outside collaborators: discussions with BNL and SLAC on sensor fabrication and bump-bonding

Fermilab testbeam and telescope

- 120 GeV proton beam at Fermilab (FTBF), well-established "telescope" of silicon strip and pixel planes with 4-5 mm pointing precision to Device Under Test (DUT) in the center
- Testbeam shuts off for accelerator complex upgrades in 2027
 - \rightarrow Nominally 1 January, may be delayed

