

PIP-II LLRF Station

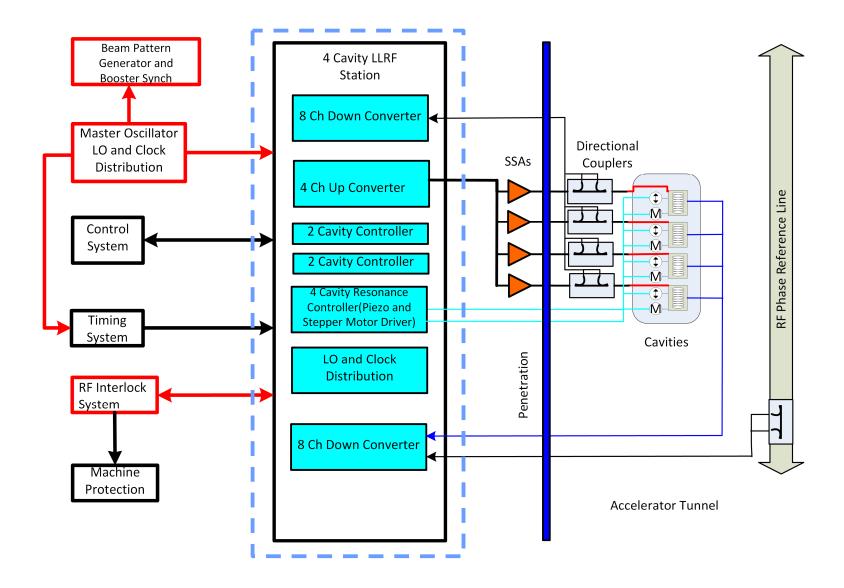
Philip Varghese PIP-II LLRF Final Design Review

July 17, 2024

A Partnership of: US/DOE India/DAE Italy/INFN UK/UKRI-STFC France/CEA, CNRS/IN2P3 Poland/WUST

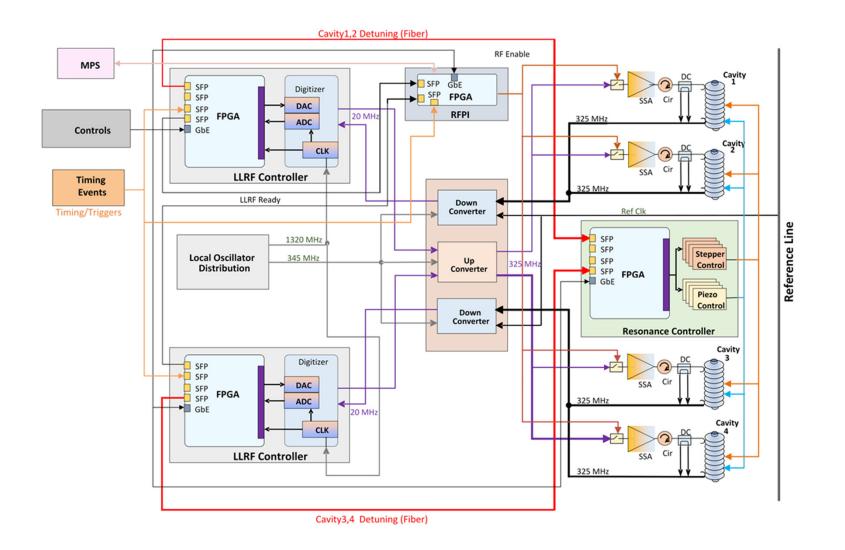
OUTLINE

- Introduction
- LLRF System Architecture
- LLRF Stations Configuration for PIP-II
- Technical Requirements and Documentation
- Preliminary Design
- PIP2IT and STC Performance/Results
- Process to Final Design
- QA/QC Plan
- Summary


Introduction

Philip Varghese

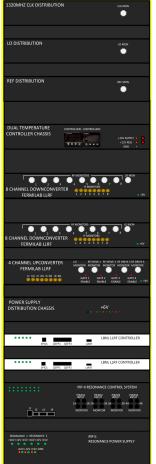
- L3 Manager for LLRF and RFPI
- Ph.D. Electrical Engineering
- 30+ Years Experience, 22 Years in FNAL LLRF Group
- >7 years of direct involvement with PIP-II
- Relevant Experience
 - Principal Engineer, LLRF Group Leader
 - Lead Engineer: PIP-II IT LLRF System design/testing
 - Lead Engineer: Design of 3 generations of FPGA based
 LLRF Hardware for SRF cavity control
 - Resonance control studies on LCLS-II cavities
 - FAST/IOTA cryomodule LLRF system design/commissioning
 - Experience working with various collaboration teams for PIP-II and LCLS-II Projects
 - Extensive experience developing various LLRF systems for normal and superconducting cavities
- Previous Relevant Experience
 - 12 years, Embedded Systems, Industrial Controls, Automotive Electronics


PIP2 4-Cavity RF Station

PIP-II LLRF FDR – LLRF Station, P. Varghese

PIP2 4-Cavity RF Station

4-cavity LLRF Station Rack – Components 1

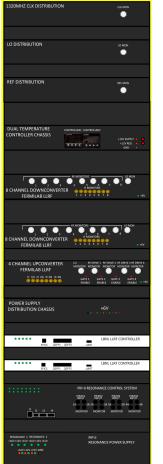


PIP-II LLRF FDR – LLRF Station, P. Varghese

4-cavity LLRF Station Rack – Components 2

	1320 MHz Clock Distribution	
	LO Distribution	
	Reference Distribution	JLAB/FNAL
•	Dual Temperature Controller	Resonance Con (Marble FPGA)
+62	8-Channel Downconverter	Xilinx – Kintex
ş	8-Channel Downconverter	
re 4 OR 1 • +9¥	4-Channel Upconverter	
	UC/DC Power Supply	
	LLRF Controller	
	LLRF Controller	
10	Resonance Controller	

RCC Power Supply



RCC Covered in James's talk

4-cavity LLRF Station Rack – Components 3

1320 MHz Clock Distribution

LO Distribution

Reference Distribution

Dual Temperature Controller

8-Channel Downconverter

8-Channel Downconverter

4-Channel Upconverter

UC/DC Power Supply

LLRF Controller

LLRF Controller

Resonance Controller

RCC Power Supply

4-channel Upconverter

8-channel Upconverter

Covered in Ahmed's talk

Beam Pattern Generator Prototype

- BPG Upgrade project is underway
- Obsolete AWG hardware replaced with an Arria10 SOM and COTS DAC Board
- FDR in mid 2025

PIP-II Linac - LLRF Station Allocation

CM type	Cavities per CM	Number of CMs	CM config- uration ⁺	CM length (m)	$Q_0 ext{ at } 2 ext{K} \ (10^{10})$	Surface resistance, $(n\Omega)$	Loaded Q^{\triangle} (10 ⁶)
HWR	8	1	8×(sc)	5.93	0.5	9.6 (2.75 [†])	2.32
SSR1	8	2	4×(csc)	5.53	0.6	14 (10 [‡])	3.02
SSR2	5	7	SCCSCCSC	6.3*	0.8	14.4	5.05
LB650	4	9	cccc	5.52*	2.15	9.0	10.36
HB650	6	4	CCCCCC	9.92*	3	8.7	9.92

	Station	Total										
	1	2	3	4	5	6	7	8	9	10	11	
	RFQ,	HWR	SSR1-	SSR2-	SSR2-	SSR2-	LB650-	LB650-	LB650-	HB650-	HB650-	
	B1-4		1,2	1,2,3	4,5	6,7	1,2,3	4,5,6	7,8,9	1,2	3,4	
Number of	6	8	16	15	10	10	12	12	12	12	12	125
cavities												
RF Freq	162.5	162.5	325	325	325	325	650	650	650	650	650	
(MHz)												

3/8" Heliax CAV, FWD, REV, REF

3/8" Heliax 1320 MHz CLK/LO

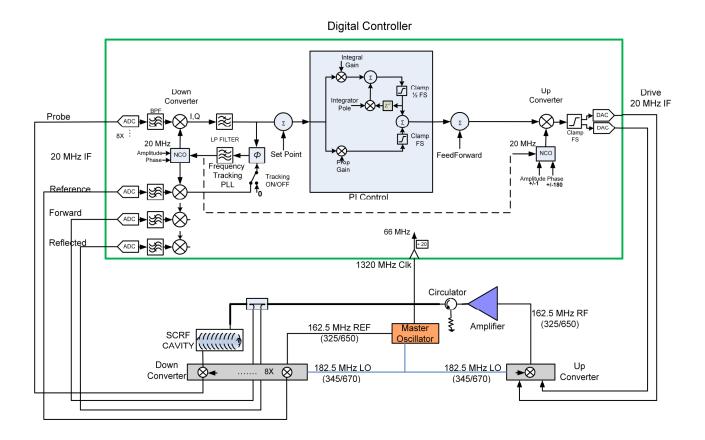
1/4" Heliax Interlocks

Peizo Control

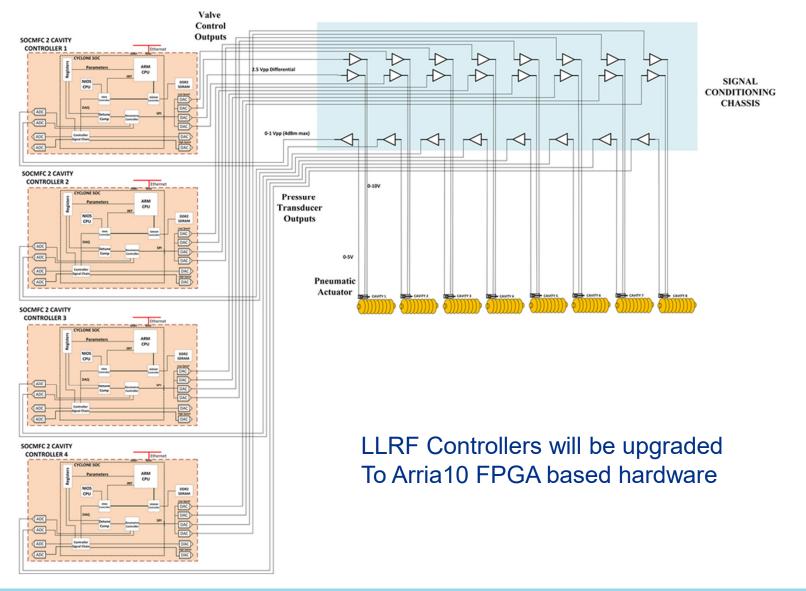
Stepper Control

PIP-II LLRF FDR – LLRF Station, P. Varghese

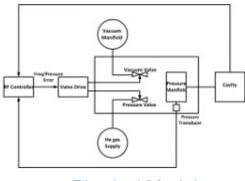
LLRF Station Requirements


- RF amplitude and phase control for 12-16 cavities per station
- Downconvert Cavity Probe, Forward and Reflected signals to 20 MHz IF
- Upconvert 20 MHz IF outputs to RF drive for SSA's
- Resonance Control for superconducting cavities
- Reference, LO and Clock distribution
- Power supplies, Temperature controllers for various chassis

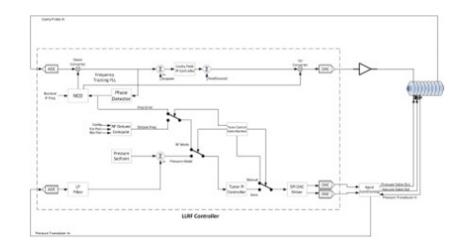
[1]	ED0011278	Technical Requirements Specification -FPGA Board
[2]	ED0011279	Technical Requirements Specification – ADC DAC Mezzanine Board
[3]	ED0005054	Technical Requirements Specification – Controller Chassis
[4]	ED0005782	Technical Requirements Specification – Resonance Control Chassis
[5]	ED0005166	Technical Requirements Specification – 8-Channel Downconverter
[6]	ED0005163	Technical Requirements Specification – 4-Channel Upconverter


LLRF Controller Design

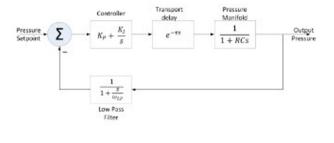
- Tested during PIP2IT
- RFQ, B1-3, HWR and SSR1 were tested with beam
- PIP-II Amplitude, Phase regulation and Cavity Detuning specifications were met



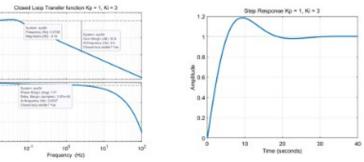
HWR Resonance Control at PIP2IT



HWR Resonance Control Design



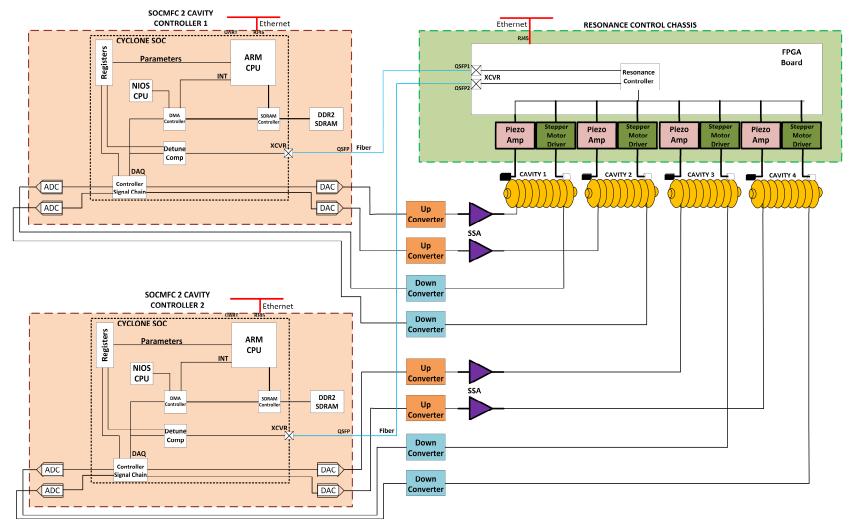
Physical Model



Controller Implementation

Control System Model

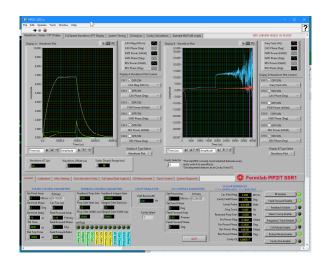
Control System Simulation



144

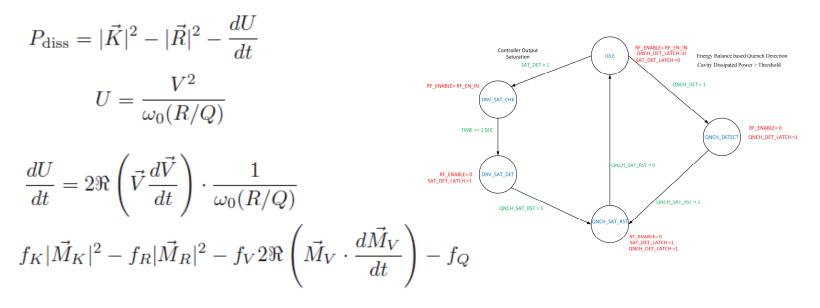
-2885

4320


SSR1 LLRF System at PIP2IT

LLRF Controllers will be upgraded To Arria10 FPGA based hardware

RF Detune Calibration



$$\begin{split} \ddot{\mathbf{V}}(t) &+ \frac{\omega_0}{Q_L} \dot{\mathbf{V}}(t) + \omega_0^2 \mathbf{V}(t) = \frac{\omega_0 R_L}{Q_L} \dot{\mathbf{I}}(t) \\ \frac{d\vec{V}}{dt} &= (-\omega_{1/2} + j\Delta\omega)\vec{V} + R_L \omega_{1/2}\vec{I} \\ \frac{d\vec{V}}{dt} &= a\vec{V} + b\vec{K}_1 \\ a &= \frac{1}{\vec{M}_V} \cdot \left[\frac{d\vec{M}_V}{dt} - \beta\vec{M}_K\right] \end{split}$$

- The cavity is operated in pulse mode with a cavity field ~ 1/2 FS magnitude and the cavity probe and forward waveforms are recorded.
- Numerical analysis of the acquired data provides cavity parameters such as half bandwidth and the detuning constants

Cavity Quench Detection/ Overdrive Protection

- Quench Detection is based on computing the dissipated power in the cavity. The dissipated power is compared against a threshold for quench detection
- RF overdrive is detected when the controller output saturation persists beyond a specified time (~ 1 sec)

Pulsed mode for calibration and system identification for the entire RF system (LCLS-II style EPICS screens)

- Hardware self tests and automated system ID performed at turn-on
- \circ SSA response
- $\circ~$ Bandwidth and Q_L
- Detune frequency
- $\circ \ \ \, {\rm Coupling \ coefficients}$
- \circ Plant gain
- \circ SEL phase offset
- Probe calibration based on emitted energy
- Circulator S_22
- Piezo transfer function and capacitance measurements
- Cavity resonance finding

SRF Cavity - PIP2IT:L1	3:H110 (o D: 871 307 4093	p Share RF Waveforms - Cryomodule Pl	IP2IT:L1B:H100 - Cavity 1 (on i 💶 💶 🛨
Cavity Control	Interlocks	Waveforms - Cryomodule PIP2IT:L18:H100 - Cavity 1 vity, Forward, Reverse Signals	More Cavity 1 Waveforms Cont
SSA More SSA. RF Mode Pulse SELAP SELA SEL SEL Raw Pulse Chirp T RF State On of On RF Ready Not ready	Current Labriet Prot FPGA PLL Lock F IOC Watchdog F Refuritive Summary F Refuritive F SA Permit F Guench Fy	2.5 2 2 1.5 2 1.5 2 1.5	Coprior Selection Min Cavity 10 222 Forward 10 5cele change
SELAPSELASEL SkdDev Phase 99.0 0.0 degrees 180 0.0000 255.1450 Amplitude 0.1 0.0 MV 0 0.0000 20 0.0399	Stepper Temperature bys Coupler Temperature 1 bys Coupler Temperature 2 bys Coupler Vacuum bys Beamline Vacuum bys		0 25 Waveform Statistics Window Sterr [r] Windth [r] 0.000 0.020 44
SEL Rew/Flabe Phase -62.3 4egrees 180 -62.28 100 Drive 20.0 % 0 20 100 Drive Linkt Level 20.0 % 0 20 100 Drive Linkt	Summary Reset Reset More Resetback Cavity 0.002 mW Forward 2.452 W -54.100 deg	200 Phate 1000 0 000 0 000	
On Time 10.752 ms Go Stop Pulse RF Of Time 281.810 ms Pulsing on	Reverse 2.370 W 95.943 deg Gradient 0.071 MV/m 404	-0.05 0 0.05 0.1 0.15 0.2 seconds	0.25 0.3 and and Reverse Q vs I
Motor Done Min A	Prizo Vidage (250 is centered) More Displays 36 7 V		VO Display Rotation Forward 0.0 Reverse 0.0

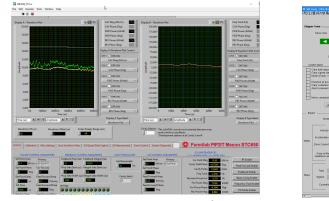
Covered in Shree's talk

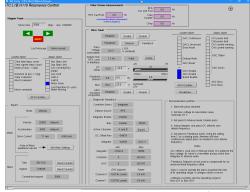
HB650 and LB650 Cavity Testing at STC

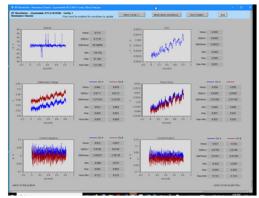
- HB650, beta=0.9, B9A-AES-001
- January-March 2020
- STC commissioning for 650 MHz operations
- Prototype coupler/tuner validation/testing
- Prototype cavity characterization

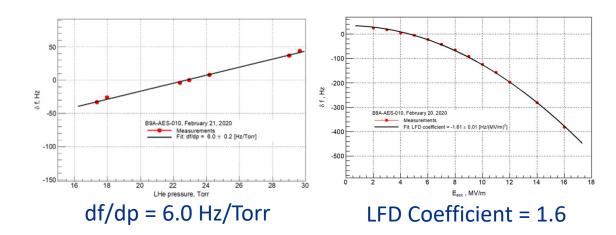
- HB650, beta=0.92, **B92D-RRCAT-502**
- October-November 2021
- Prototype coupler/tuner validation/testing
- Prototype cavity characterization, qualification for prototype HB650 cryomodule assembly

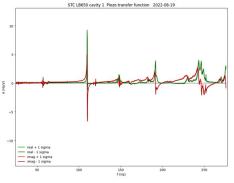
- LB650, beta=0.61, B61-EZ-001
- June-September 2022
- Preproduction coupler/tuner testing
- Prototype cavity characterization


Bare HB650 Cavity


LB650 Cavity on ANL EP stand


HB650 Cavity Measurements


GDR Mode 15 MV/m



Piezo Tuner Controls

Tuner Waveforms

Piezo Transfer Function

Path to Final Design

- Options Considered for LLRF Controller
 - 1. Option A FNAL Arria10 Based SOCFPGA Chassis
 - 2. Option B LCLS-II design based RFS controller
 - 3. Port LCLS-II firmware to FNAL controller
 - 4. Test at STC650 and PIP-II-TI

Fermilab Arria10 SOC FPGA Board

LBNL RFS Controller (LCLS-II Based Design)

• Final Selection of LLRF Controller

- 1. Marble FPGA board based RFS chassis was chosen
- 2. FNAL controller firmware/software scaling to full Linac is challenging
- 3. LCLS-II firmware to ported to FNAL controller does not efficiently use SOC features
- 4. LCLS-II deployment of the RFS firmware/software and EPICS interface provides a straightforward path to the PIP-II design.

PIP-II LLRF FDR – LLRF Station, P. Varghese

Quality Assurance – Test/Acceptance Plan

- A detailed test procedure will be used for each RF chassis component with acceptance criteria included to ensure any defects are identified before integration into RF station.
- The RF controller and Resonance Control Chassis will have test procedures that check all subsystems and features such as configuration, signal levels, network connectivity, digitizer noise performance etc.
- Test software and bench setups will be developed to facilitate functional and performance testing of all functional blocks and logging all test data.
- System level testing procedures will be used to test the integrated RF station components along with the EPICS user interface

Covered in Shrividhyaa's talk

Summary

- Third generation RF chassis components
- PIP2IT demonstrated LLRF systems and met PIP-II requirements
- LCLS-II is using same RF chassis components
- Goal is to use the proven LCLS-II software/firmware with EPICS user interface
 implemented on newer hardware
- Porting the firmware/software to newer hardware is not trivial but requires far less resources and effort than developing new software/firmware.
- Porting has been successfully demonstrated on the PIP-II RCC designed with a newer FPGA board from a different vendor (XILINX to INTEL to XILINX switch)

References

- P. Varghese et. al., 'LLRF System for the Fermilab PIP-II Superconducting LINAC', LLRF2023, Gyeongju, Republic of Korea, October 2023
- P. Varghese et. al., 'PIP-II-IT Final Report LLRF Systems', PIP-II DocDB,#5396-v1, June
 2021
- P. Varghese *et al.*, "Resonance Control System for the PIPII-IT HWR Cryomodule", IPAC21, Campinas, Brazil, May 2021, THPAB337
- P. Varghese *et al.*, " Performance of the LLRF System for the Fermilab PIP-II Injector Test", IPAC21, Campinas, Brazil, May 2021, THPAB338
- P. Varghese, 'Mu2e LLRF Controller Board Testing', Mu2e DocDB, # 30385-v2, Aug 2019

Thank You

PIP-II LLRF FDR – LLRF Station, P. Varghese

Backup Slides

