

Fermilab LLRF Controls Integration

Pierrick Hanlet PIP-II LLRF Final Design Review

17 July 2024

A Partnership of: US/DOE India/DAE Italy/INFN UK/UKRI-STFC France/CEA, CNRS/IN2P3 Poland/WUST

Fermilab Control System Content

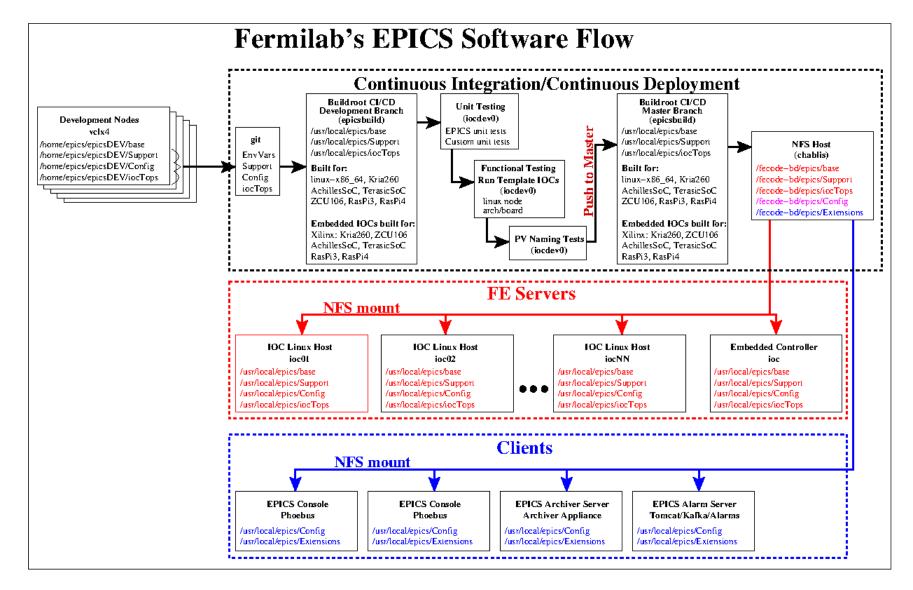
- Introduction
- Motivation
- Existing Fermilab code structure
 - Integrating SLAC/LBNL software with Fermilab software infrastructure
- Proposed software restructuring
- Client software
- Summary

Introduction

- At Fermilab since 1989 as visiting scientist; joined staff in 2018
- 18+ years of experience using EPICS
- Working in Accelerator Division's Front End controls team
 - Leading development and implementation of EPICS infrastructure at Fermilab
 - Goal is to simplify deployment of IOCs by non-experts
 - Goal is to modernize the client-side tools for operators in a seamless transition
 - Use modern computing methods; e.g. Continuous Integration/Continuous Deployment (CI/CD) for code management
- Brian Chase invited me to assist the LLRF team to support SLAC/LBNL software at Fermilab
- Recognize the value of the strong inter-lab LLRF collaboration
 - My task is to integrate the existing software into our framework <u>without breaking it</u>

Motivation

- Treating EPICS deployment as a green field to simplify deployment for non-experts
 - https://ghe-pip2.fnal.gov/epics-controls/
- Small controls team, therefore we require:
 - robust build of infrastructure
 - automated build procedures
 - extensive testing
 - minimal functionality to automate deployment & production monitoring of IOCs
- Developed a standard EPICS infrastructure to simplify developing IOCs for new developers
 - "base" & "Support" software are built (on all supported platforms) and made available on controls network
 - developers start from template IOCs and build against production ./base and ./Support
 - template IOCs have built-in basic functionality required of all FNAL IOCs
- Standard deployment and automated build for:
 - robustness
 - ease in maintaining and debugging software
- Implement modern computing practices Continuous Integration/Continuous Deployment (CI/CD)
- Using PVXS api and disabling Channel Access (CA)
 - pvAccess protocol \rightarrow structured data
 - already has ipV6 and multicast
 - new network security measures (zero-trust) are being implemented
- Client side
 - Update GUIs
 - Provide Save & Restore functionality
 - Provide data archiver
 - Provide alarms
 - Provide channel finder
- Strong collaboration, any changes in structure must remain in line with LLRF collaboration



FNAL EPICS code structure

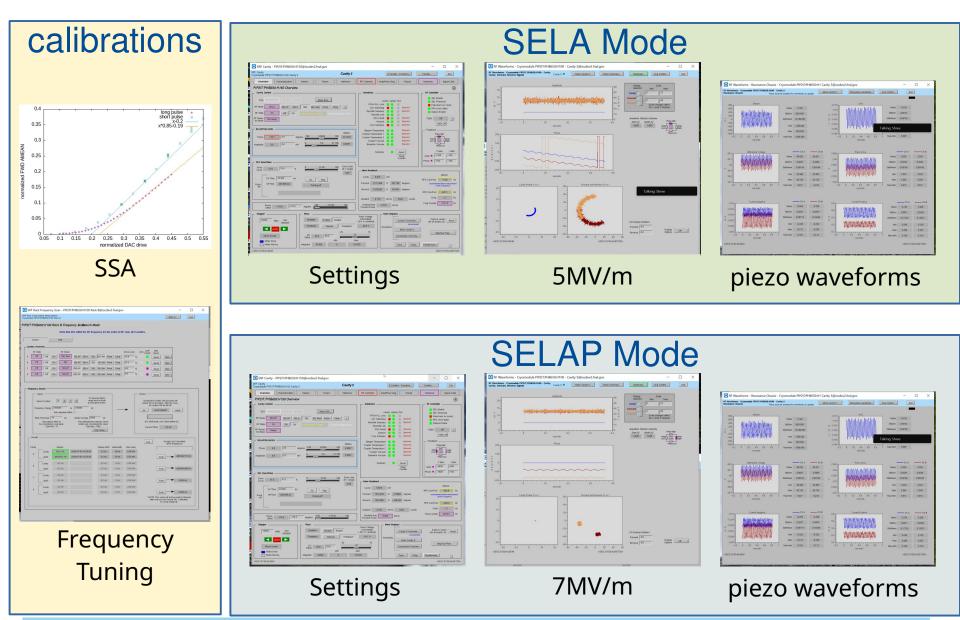
- Structure follows conventional EPICS implementations
- The Fermilab "standard deployment" of EPICS IOC code assumes a 3-tier build:
 - EPICS base main core of EPICS, comprising the build system and tools, common and OS-specific interface libraries, Channel Access and PV Access client and server libraries, static and run-time database access routines, the database processing code, and standard record, device, and driver support. Production code resides in /usr/local/epics/base
 - EPICS Support contains modules which are analogous to drivers one might add to the kernel for a computer to run specific functions and/or hardware drivers. We presently support ~50 support modules and expect this to grow. Production code resides in /usr/local/epics/Support
 - EPICS IOCs (Input/Output Controller) specific front end servers for controls and monitoring; these are built by pulling in Support modules and adding application specific code. A template IOC is provided to developers and already has minimal Fermilab required functionality. Production code resides in /usr/local/epics/iocTops
- EPICS base, Support, & iocTops are built for different architectures/platforms
- EPICS base, Support, & iocTops are hosted by NFS server
- Code base is built and tested in Continuous Integration/Continuous Deployment pipeline
- Goal: robust EPICS code base simplify IOC development for novices and to simplify expert debugging
- Builds exist for linux-x86_64, arm: Cyclone V, Arria-10, RasPi3, RasPi4, Kria260, ZCU106 (Xilinx)

Fermilab code structure – path to deployment

DOE Laboratories in LLRF Collaboration

LLRF Teams from FNAL, JLab, SLAC and LBNL have been collaborating for the past 6 years in the context of LCLS-II and now PIP-II

Successful collaboration for LCLS-II and after 9 years we continue to want to work together



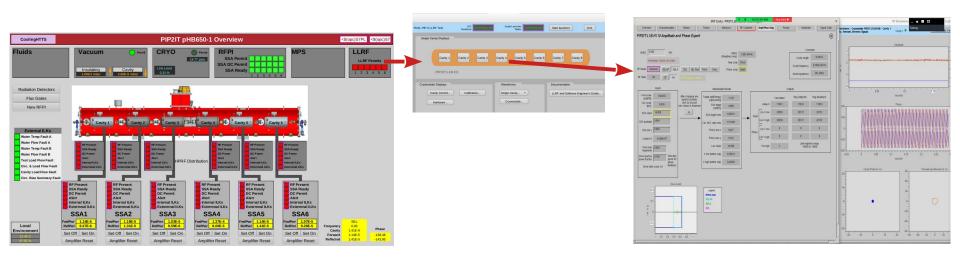
7

2024-07-17

SLAC/LBNL Software – pHB650 testing @ PIP2IT

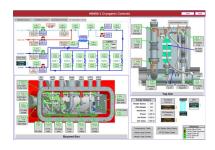
SLAC/LBNL Existing Software

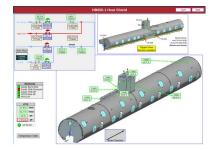
- SLAC/LBNL software is stable and mature
- Used at SLAC, LBNL, FNAL, and JLab
- Code is well documented
- Code base is appropriately versioned in git
- Most of the heavy lifting is done in python scripts EPICS mostly serves as user interface & monitoring
- > 22k PVs for an 8 cavity cryomodule

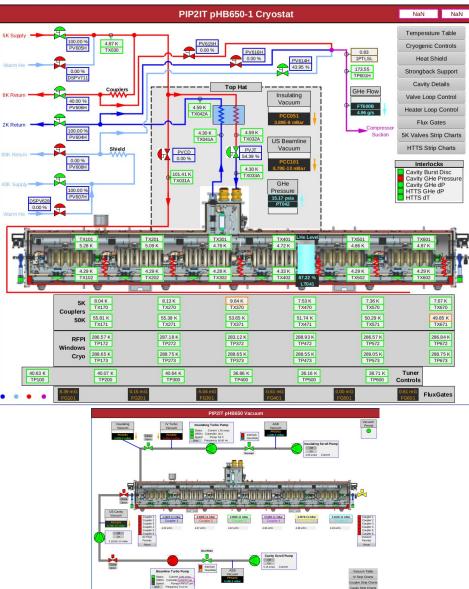

Challenges for merging existing software within Fermilab infrastructure:

- Developed over long time, features added as needed, using different standards
 - Code is downloaded as two monoliths
 - Uses specific (older) version of EPICS base => cannot take advantage of EPICS v7 features
 - Different laboratories have hardware configurations which don't match LCLS-II requirements
 - Scripts and configuration files in a variety of sub-directories
 - Macro substitution is performed at run time
 - Structure presently incompatible with Fermilab deployment model
- Proposed code restructuring considerations:
 - Developed plan with Sonya Hoobler (SLAC) to restructure code
 - Code will be re-factored to have Common, LCLS-II specific, FNAL specific elements, etc.
 - Contract in place with Osprey Distributed Control Systems to perform refactoring
 - It is critical to maintain compatibility between labs
 - Restructure location of software, <u>not</u> change software
 - Existing code makes use of environment variables which will simplify restructuring
 - Include modernization of existing GUIs => convert EDM files to Phoebus bob files
- Have successfully built existing software using FNAL structure

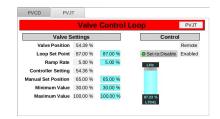
Client Side Support

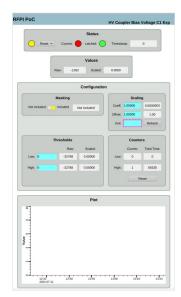

- Fermilab Controls team supports the following clients:
 - Archiver Appliance operational at PIP2IT
 - Kafka Alarm server operational at PIP2IT
 - Channel Finder operational at PIP2IT
 - Save & Restore in place and used for much of PIP2IT LLRF
 - Convert edm \rightarrow Phoebus in progress
 - Significant project as there are >100 screens
 - Phoebus has conversion capability, but not all features are automatically ported




Client Side Support







RFPI Final Prototype Testing

4 Cavity RFPI Module

	Alarms							und Mai	ADC Readouts			
SSA communication lattice error					ACK		Diagnostics/Management					
					Inpu	rts						
Binary (PLC Based)					Analog							
Cavity 1			c	Cavity 1			Cavity 2					
Personnel Safety Permit	c1 🜔	Personnel Safety Permit C2 Coupler Airflow sens C2			Field E	ield Emission Probe C1		Field Emission Prot				
Coupler Airflow sens C	1 0				Temperat	ure Sensor RTD1 C1	Ó	Temperature Sensor RTD1		~	RF Antennas	
SSA Ready C1	SSA Ready C2			O O	HV Coup	ler Bias Voltage C1	1 0	HVC	oupler Bias Voltage C2	0	RF Antenna 1 (NIRP1)	
Coupler Vacuum Permit C1		Coupler	Vacuum Pen	mit C2	HV Co	upler Bias Curr C1	Ó	HV C	Coupler Bias Curr C2	0	RF Antenna 2 (NIRP2)	
Cavity 3			Cavity 4			avity 3			Cavity 4	00	RF Antenna 3 (NIRP3) RF Antenna 4 (NIRP4)	
Personnel Safety Permit	c3 🔿	Personne	s Salety Pen	mit C4	Field E	mission Probe C3	0	Field	d Emission Probe C4			
Coupler Airflow sens C3 Couple		Airflow sens C4		Temperat	ure Sensor RTD1 C3	õ	Temperature S	rature Sensor RTD1 C4	0	RF Antenna 5 (NIRP2)		
SSA Ready C3	ŏ	55	A Ready C4	ŏ	HV Coup	ler Bias Voltage C3	ŏ	HV Co	oupler Bias Voltage C4		RF Antenna 6 (NIRP6)	
Coupler Vacuum Permit	C3 🔿	Coupler	Vacuum Perr	nit C4	HV Co	pler Bias Curr C3	rca 🔘	HV	Coupler Bias Curr C4			
	-											
He Level&Pressure (CR1	0 0	Va	cum Status									
Tracking												
					Per	mits						
	Cavity 1 Cav			Cavity 2		Cavity 3	Cavity 3		Cavity 4			
	LLRF P	ermit C1	0	LLRF Pennit C2	•	LLRF Permit C3		0	LLRF Permit C4	•		
	SSA Po	mit C1	0	SSA Permit C2	0	SSA Permit C3		0	SSA Permit C4	0		
	SSA DC Permit C1		0	SSA DC Permit C2	0	SSA DC Permit C	3	0	SSA DC Permit C4	0		
	MPS Permit C1 M			MPS Permit C2	0	MPS Permit C3		•	MPS Permit C4	0		

- New module was installed last month at CMTF test stand
- All I/O were individually tested
- Testing is continuing with remote participation of LUT

Summary

- Standard SLAC/LBNL implementations are running at Fermilab in CMTS, PIP2IT, and LLRF test stands
- Strategy for creating a robust EPICS deployment at Fermilab is in place
- Strategy for modifying existing SLAC/LBNL code structure to fit diverse configurations is agreed upon
- Contract with Osprey for code refactoring in the the works
- Updating clients for PIP-II in progress