
The full vector (complex) expression for cavity accelerating voltage ~V , combining shunt

impedance, detuning (primarily microphonics), and beam loading, is(
1− j ωd

ωf

)
~V +

1

ωf

d~V

dt
= 2 ~K1

√
R1 −Rc~I

where ~K1 is the incident wave amplitude in
√

Watts, R1 = Q1(R/Q) is the coupling

impedance of port 1, ~I is the beam current, Rc = QL(R/Q) is the coupling impedance to

the beam, and ωf = ω0/2QL is the mode’s bandwidth, and ω0 is the nominal resonant

frequency of the mode. ωd = 2π∆f is the (time varying) detune frequency, i.e., the

difference between actual eigenmode frequency and the accelerator’s time base; that term

will be discussed more later. The overall QL is given as 1/QL = 1/Q0 + 1/Q1 + 1/Q2,

where 1/Q0 represents losses to the cavity walls, 1/Q1 represents coupling to the input

coupler, and 1/Q2 represents coupling to the field probe. (R/Q) is the shunt impedance of

the mode in Ohms, a pure geometry term computable for each particular eigenmode using

E&M codes like Superfish. Physically, shunt impedance relates a mode’s stored energy U

to the accelerating voltage it produces, according to

U =
V 2

(R/Q)ω0
.

The only assumptions in the above formulation are that the cavity losses are purely resis-

tive, and thus expressible with a fixed Q0, and that no power is launched into the cavity

from the field probe. If other ports have incoming power, there would be additional terms

of the same form as 2 ~K1

√
R1.

The output wave ~E2 from the field probe is

~E2 = ~V /
√
Q2(R/Q) .

The discussion so far applies independently to every cavity eigenmode. Each such mode

has its own value of ~V , ωd, (R/Q), Qi, and therefore ωf and RC . The fields from all

the eigenmodes superimpose. If one assigns the subscript µ to a particular such mode,

the expression for emitted (a.k.a. reflected) wave travelling outward from the fundamental

port includes a prompt reflection term, yielding

~E1 =
∑
µ

~Vµ/
√
Qµ1(R/Q)µ − ~K1 .

It’s possible to rewrite equation (1) in the frame of the eigenmode itself. Define ~S such

that ~V = ~Sejθ, where dθ/dt = ωd, then(
1− j ωd

ωf

)
~Sejθ +

1

ωf

(
d~S

dt
ejθ + ~S · jωdejθ

)
= 2 ~K1

√
Rc −Rc~I
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d~S

dt
= −ωf ~S + ωfe

−jθ
(

2 ~K1

√
Rc −Rc~I

)
This state-variable equation is a pure low-pass filter, an advantage especially in the FPGA

implementation.

These electromagnetic fields interact mechanically. Each mode’s fields generate a force

proportional to V 2
µ = |~Vµ|2, and mechanical displacements influence each mode’s instan-

taneous detune frequency. Construct the previous section’s ωd as a baseline ωd0 from the

electrical mode solution (e.g., −2π(800 kHz) for the TTF cavity’s 8π/9 mode), plus a per-

turbation ωµ contributed from the mechanical mode deflections. Consider the electrical

mode index µ to include not only electrical eigenmodes of one cavity, but modes of all

cavities in the mechanical assembly (e.g., cryomodule). Also include the dependence on

piezoelectric actuator voltages Vκ. Then if the assembly’s mechanical eigenmodes are in-

dexed by ν, mechanical forces Fν and displacements xν of those eigenmodes are related to

the electrical system by

Fν =
∑
µ

AνµV
2
µ +

∑
κ

BνκVκ

ωµ =
∑
ν

Cµνxν ,

where A, B, and C are constant matrices. These expressions are understood to apply at

every time instant; the quantities V , F , x, and ω all vary with time.

The differential equation governing the dynamics of each mechanical eigenmode is that of

a textbook second order low-pass filter. In Laplace form,

kνxν =
Fν

1 +
1

Qν

s

ων
+

(
s

ων

)2 ,

where kν is the spring constant. For computational purposes, we want it expressed in

terms of the state-space formulation

d

dt

(
x
y

)
=

(
a −b
b a

)(
x
y

)
+ c ·

(
0
F

)
,

where a scaled velocity coordinate y has been introduced. Convert the latter equation to

Laplace form and solve to get(
x
y

)
= −c

(
a− s −b
b a− s

)−1

·
(

0
F

)
.

Analytically invert that 2× 2 matrix, and multiply out to get

x =
−bcF

(a− s)2 + b2
.
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Equate coefficients with the earlier low-pass filter form, in the case Q > 1
2 , to get

a± jb = ω

(
−1

2Q
± j
√

1− 1

4Q2

)

c = −1

k
· a

2 + b2

b
= −ω

2

kb
.

All the symbols above, including the mechanical resonance frequency ω, apply to a single

mechanical eigenmode, and thus have an implied ν subscript.

A deeper understanding of the forces and responses of a single electrical eigenmode µ of the

cavity comes from Slater’s perturbation theory. For an eigenmode solution ~H(~r) sin(ωµt),
~E(~r) cos(ωµt) to Maxwell’s equations in a closed conducting cavity (volume Φ), the stored

energy U is given by

U =

∫
Φ

[µ0

4
H2(~r) +

ε0

4
E2(~r)

]
dΦ .

Suppose a mechanical eigenmode ν involves small deflections x · ~ξ(~r), where x gives the

amount of deflection, and the dimensionless quantity ξ(~r) represents the mode shape. Both

the force on the mode and the response to a deflection x are given in terms of the Slater

integral

F =

∫
S

[µ0

4
H2(~r)− ε0

4
E2(~r)

]
~n(~r) · ~ξ(~r)dS ,

where ~n(~r) is the normal vector to the cavity surface S, and F directly gives the force.

Note in particular the subtraction of E and H terms, contrasted with the addition in

the energy integral. Also notice the dot product of the deflection shape with the surface

normal. Then the resonance frequency shift of the electical eigenmode is given by

∆ωµ = −xωµ
F

U

and the force by

F =
F

U

1

(R/Q)ωµ
V 2 ,

where F/U is a property of the electrical eigenmode, independent of amplitude, with units

of m−1. Thus Aνµ = (F/U)/((R/Q)ωµ), and Cµν = −ωµF/U .

Slater’s analysis above lets us express the static Lorentz response of an electrical mode to

its own stored energy as

∆ωµ
V 2

=
CµνAνµ
kν

= −
(
F

U

)2
1

kν(R/Q)
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correctly showing that this constant is always negative: the mode’s static resonant fre-

quency gets lower as it is filled. Summing over all mechanical modes ν gives the total DC

response, often quoted in units of Hz/(MV/m)2.

Using electrical measurements alone, it’s not possible to constrain the scaling of xν . It is

therefore helpful to rescale xν and Fν each by a factor of
√
kν , and eliminate kν from the

equations. Instead of conventional units (m and N) for x and F , they now both have units

of
√

Joules, so that x · F still represents energy. In this rescaled no-k case,

Aνµ =
1

ω0

√
− 1

(R/Q)

∆ω

V 2

Cµν = −ω0

√
−(R/Q)

∆ω

V 2
.

It is perhaps an unexpected result that the cross-coupling between cavity modes (e.g.,

excite the π mode, measure ∆ω for the 8π/9 mode) is quantitatively predicted from mea-

surements of each mode individually, with the exception of the choice of sign of the above

radicals. All that is required is confidence that mechanical modes are correctly identified

and non-degenerate.

See also Ponderomotive Instabilities and Microphonics – A Tutorial, J. R. Delayen
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