

PIP-II LLRF Introduction and Overview

P. Varghese – L3 LLRF/RFPI PIP-II LLRF Final Design Review

July 17, 2024

A Partnership of: US/DOE India/DAE Italy/INFN UK/UKRI-STFC France/CEA, CNRS/IN2P3 Poland/WUST

LLRF FDR Content

- Introduction
- Collaboration
- PIP-II overview and requirements
- System Design, Simulations
- Results from Testing at CMTF and STC
- Status of RFPI, MO/PRL, BPG and WFE upgrades
- Summary

- CMTF Cryo Module Test Facility
- STC Spoke resonator Test Cave
- RFPI RF Protection and Interlocks
- MO Master Oscillator
- PRL Precision Reference Line
- BPG Beam Pattern Generator
- WFE Warm Front End

About Me:

Philip Varghese

- L3 Manager for LLRF and RFPI
- Ph.D. Electrical Engineering
- 30+ Years Experience, 22 Years in FNAL LLRF Group
- >7 years of direct involvement with PIP-II
- Relevant Experience
 - Principal Engineer, LLRF Group Leader
 - Lead Engineer: PIP-II IT LLRF System design/testing
 - Lead Engineer: Design of 3 generations of FPGA
 based LLRF Hardware for SRF cavity control
 - Resonance control studies on LCLS-II cavities
 - FAST/IOTA cryomodule LLRF system design/commissioning
 - Experience working with various collaboration teams for PIP-II and LCLS-II Projects
 - Extensive experience developing various LLRF systems for normal and superconducting cavities
- Previous Relevant Experience
 - 12 years, Embedded Systems, Industrial Controls, Automotive Electronics

DOE LLRF and International Collaborations

LLRF Teams from FNAL, JLab, SLAC and LBNL have been collaborating for the past 9 years in the context of LCLS-II and now PIP-II. We are integrating DAE and TUL into this collaboration.

DAE LLRF and RFPI systems for 325 MHz and 650 MHz cavities have been Received at FNAL and have completed preliminary testing

DAE Team is arriving at FNAL this year to complete testing with cavities

PIP-II LLRF Collaborations

Fermilab Philip Varghese(L3) Shereze Humphrey(CAM) Shrividhyaa Sankar Raman(SE) Lennon Reyes(EE) Dan Klepec(Tech) Matei Guran(EE) Ahmed Syed(EE) Pierrick Hanlet(SE) Niral Patel(EE) **DAE** (LLRF System and RFPI) **Gopal Joshi BARC LLRF Team**

Berkeley Lab (LLRF Controller) Qiang Du Larry Doolittle Shreeharshini Murthy

Jefferson Lab (Resonance Controller) Curt Hovater James Latshaw

SLAC (Beam Pattern Generator) John Dusatko Daron Chabot

SC Linac - Main Part of PIP-II

- SC Linac consists of
 - Room temperature front end (up to 2.1 MeV)
 - SC (cold) linac
 - 5 types of SC cavities: HWR, SSR1, SSR2, LB650, HB650
- 3 RF frequencies are used for acceleration

 β in the above figure: optimal for HWR, SSR1, SSR2; geometric for LB650, HB650

PIP-II High Level Performance Parameters

Performance Parameter	PIP	PIP-II	Unit
Linac Beam Energy	400	800	MeV
Linac Beam Current (chopped)	25	2	mA
Linac Pulse Length	0.03	0.54	ms
Linac Pulse Repetition Rate	15	20	Hz
Linac Upgrade Potential	N/A	CW	
Booster Protons per Pulse (extracted)	4.2	6.5	1012
Booster Pulse Repetition Rate	15	20	Hz
Booster Beam Power @ 8 GeV	80	166	kW
8 GeV Beam Power to LBNF	N/A	83-142*	kW
Beam Power to 8 GeV Program	30	83-24*	kW
Main Injector Protons per Pulse (extracted)	4.9	7.5	1013
Main Injector Cycle Time @ 120 GeV	1.33	1.2	sec
Main Injector Cycle Time @ 60 GeV	N/A	0.7	sec
Beam Power @ 60 GeV	N/A	1	MW
Beam Power @ 120 GeV	0.7	1.2	MW
Upgrade Potential @ 80-120 GeV	N/A	2.4	MW

* First number refers to Main Injector operations at 120 GeV; second number to 60 GeV.

40 m, ~25 MeV

Phase 1: retirement of risks associated with operation of the PIP-II linac in pulsed mode as required for neutrino operations and described in the CDR (1% duty factor). The primary risks to be retired during this period (now-2020) include:

- Achievement of required beam characteristics from the ion source through the SSR1 cryomodule
 - Operated 2 mA, 20 Hz, 550 μsec through MEBT \checkmark
- Demonstration of MEBT chopper operations at a level required for Booster injection
- Demonstration of the operation of the HWR cryomodule, with beam, with resonance control, in close proximity to the MEBT beam absorber \checkmark
- Demonstration of stable beam acceleration in the SSR1 cryomodule, under the full control of prototype RF control systems, including resonance control √

Requirements Flow Down

- PIP-II performance goals and physics design flow down from the project Functional Requirements Specification
 - TC: #ED0001222
 - Pip2-docdb 1166
- PIP-II LLRF FRS

 TC: #ED0004194

Main Physics Requirements

- 0.01% rms beam energy spread

- 0.01 deg. rms beam energy jitter

This then drives the cavity regulation requirements

- 0.06% rms amplitude
- 0.06 deg rms phase

Proton Improvement Plan–II Injector Test

- LLRF System Prototypes Successfully Tested with beam
 - Field Controllers, Up/Down Converters (162.5,325,650 MHz)
 - Resonance Controllers thermal, pneumatic and stepper/piezo
 - RF Protection and Interlocks
 - Beam Pattern Generator
 - Limited but highly successful operation of Berkeley(LCLS-II) system with EPICS interface

LLRF Systems Diagram

LLRF Control Architecture1 – Amplitude/Phase

LLRF Control Architecture2 – I/Q Control

Integral Gain Clamp 1/2 FS に Down Up Drive Converter Converter Integrator 20 MHz IF Pole RPF DAC Probe I,Q \approx ADC Σ Σ Σ DAC 8X : Clamr ¢ Clamp FS LP FILTER FS 20 MHz 20 MHz Amplitude NCO Set Point FeedForward NCO Φ 20 MHz IF Prop Frequency Gain Tracking Tracking Amplitude Phase +/-1 +/-180 PLL ON/OFF Reference ADC PI Control Forward 66 MHz Reflected ÷ 20 ADC 1320 MHz Clk Circulator 162.5 MHz RF (325/650) ₹ Amplifier 162.5 MHz REF Master SCRF (325/650) Oscillator Down Up 182.5 MHz LO 182.5 MHz LO 8X 🚫 ►⊗ \otimes Converter Converter (345/670) (345/670)

Digital Controller

13 7/17/24

Open loop transfer function of cavity and controller

Magnitude

Phase

Max gain Closed-loop bandwidth: ~50 kHz Control system zero: 15 kHz Proportional gain: 1500 Integral gain: 1.44e+08

Nominal gain Closed-loop bandwidth: ~25 kHz Proportional gain: 750 Integral gain: 7e+07

 10^{2}

10¹

10³

10⁴

frequency (Hz)

0

-20

-40

-60

Phase (deg)

-120

-140

-160

10⁶

10

10⁵

Controller Cavity Open loop G

Total phase noise to SSA from controller and oscillator

Closed loop response

Careful attention to noise terms will allow high controller gains

Code developed for LCLS-II Larry Doolittle LBNL and FNAL Cumulative SSA phase noise voltage

- Cavity: 0.00078° rms
- SSA: 1.04°
- SSA from ADC noise 0.96°

Phase-energy Stability Simulations

- Studying the amplitude and phase regulation requirements and their impact on the LLRF system
 - Study effects of perturbations on the cavities through beam simulations
 - Develop code that performs basic beam dynamics calculations as well as RF feedback simulations to study the interaction between the RF system

Linac output energy sensitivity to single cavity phase errors

0.20 0.15 0.10 0.05 0.0 -0.05 -0.10-0.151° @ 325 @ 650 -0.20@ 325 & 2° @ 650 -0.25^L 20 40 80 100 120 140 160 60 z position [m]

Linac output energy sensitivity to phase reference line phase errors at frequency transitions

J. Edelen

Simulating the impact of RF transients due to beam-loading on the beam-parameters

- The feedback model for the RF cavity is done in python (and compared with existing MATLAB models)
- The energy gain for each cavity was calculated using simulation results from PARMELA and TraceWin
- The phase advance during drift spaces was calculated using analytic models
- The beam current was assumed to be 2mA average during the pulse
- Left: Change in energy along the beam pulse due to uncompensated transients in the RF system
- Right: Change in phase along the beam pulse due to uncompensated transients in the RF system

RFQ and Buncher pulsed response

RFQ Pulse measured vs. simulated (Proportional and integral gains were 9.0 and 8.0e5 respectively)

Buncher simulated vs. measured (kp 3.5, ki 6.0e5, QI ~5000)

Transient Response and Beam Loading Compensation Bunching cavity 2

BLC Tuning was focused on minimizing phase excursion at leading edge Phase disturbance reduced from -3.5 deg to < 0.2 deg

BLC works well and meets spec BLC learning system is not automated in this code version

BLC ON

63.600-

63.400-

63.200-

63.000-

62.802-

Performance of LLRF Systems at PIP2IT - 1

REGULATION (In Loop Measurements)

PIP-II Specifications

Energy Stability (Linac)

< 0.01%

• Phase Regulation

- < 0.065 deg rms
- Amplitude Regulation (individual cavity) < 0.065% rms

HWR Amplitude and Phase Regulation										
	Cavity4	Cavity5	Cavity6	Cavity7	Cavity8					
Cavity Field Setpoint (MV/m)	2.89	6.04	8.94	8.5	8					
Amplitude Regulation (rms) %	0.0135	0.0106	0.0101	0.0081	0.0103					
Phase Regulation (rms) deg	0.0228	0.0065	0.0056	0.0055	0.0062					
Feedback Proportional Gain	1000	1000	1000	1000	1000					
Feedback Integral Gain (rad/sec)	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000					

SSR1 Amplitude and Phase Regulation									
	Cavity1	Cavity2	Cavity3	Cavity4	Cavity5	Cavity6	Cavity7	Cavity8	
Cavity Field Setpoint (MV/m)	4.88	4.63	4.78	7.32	7.8	7.56	7.32	10	
Amplitude Regulation (rms) %	0.0194	0.0289	0.0219	0.0157	0.014	0.0158	0.0147	0.0124	
Phase Regulation (rms) deg	0.0116	0.0164	0.0118	0.0091	0.0088	0.0093	0.0092	0.0076	
Feedback Proportional Gain	1600	1600	1600	1600	1600	1600	1600	1600	
Feedback Integral Gain (rad/sec)	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	

Spectrograms of Frequency Modulation of cavity detuning(7&8)

These spectrograms give insight into both external and internal noise and vibration sources -Note strong continuous lines and 15 Hz line with 180 second beat period

Microphonic Spectra SSR1

<-Resonance control feedback off – higher low frequency component

Rescon FB On ->

Identification of vibration sources is the first step to reducing microphonics Microphonic levels were not bad enough to warrant investigation in PIP2IT

SSR1 Cavity Detuning Histograms

LB650 Cavity Measurements

4/5π Mode, 625 kHz

3/5π Mode, 2.125 MHz

Suppression with notch filters

Detuning Spectrogram

PIP-II LLRF FDR Introduction P. Varghese

Prototype HB650 Cryomodule Testing at CMTF

pHB650 Cryomodule

40 kW SSA

SELAP Mode at 5 MV/m

Frequency Tune Calibration

PIP-II LLRF FDR Introduction P. Varghese

Display Of 1

Acq Control . Evit

1800 Ange Cove Logo

RFPI Final Prototype Testing at CMTF

4 Cavity RFPI Module

	Alarms		Diagnostic	and Management	Settings	ADC Readout	
	SSA communication	ation latice error ACK DiagnosticsManagement					
			Inputs				
Binary	y (PLC Based)				Analog		
Cavity 1	Cav	ity 2	Cavit	y 1	Cavity 2		
ersonnel Salety Permit C3	Personnel Sal	lety Permit C2	Field Emissi	on Probe C1	Field Emission Probe C2		
Coupler Airflow sens C1	Coupler Airf	low sens C2	Temperature S	ensor RTD1 C1	Temperature Sensor RTD1 C2	-	RF Antennas
SSA Ready C1	SSA Re	ady C2	HV Coupler B	as Voltage C1	HV Coupler Bias Voltage C2	0	RF Antenna 1 (NIRP1)
Coupler Vacuum Permit C1	Coupler Vacu	um Permit C2	HV Coupler	Bias Curr C1	HV Coupler Bias Curr C2	0	RF Antenna 2 (NIRP2)
Cavity 3	Cav	ity 4	Cavity 3		Cavity 4	0	RF Antenna 3 (NIRP3)
vesoncel Safety Permit C3	Personnel Sal	key Permit C4	Caring S		Field Emission Probe C4	0	RF Antenna 4 (NIRP4)
Counter Aidine sens C3	Counter Aid	inu sees C4	Temperature 5	error RTD1 C3	Temperature Service PTD1 C4	0	RF Antenna 5 (NIRP2)
SSA Ready C3	554 Br	why C4	HV Counter B	ins Voltage C3	HV Counter Bias Voltage C4	0	RF Antenna 6 (NIRPE)
Sector Vaccor Decel Cl		and Description	NV Coursier	Bins Curr C3	My Courter Birs Curr CA		
e Level&Pressure (CRYO)	Vacuum	Status					
cking							
			Permits				
	Cavity 1	Cavity 2	-	Cavity 3	Cavity 4	-	
	LLRF Permit C1	LLR# Permit C:	mit C2 ULIRIF Permit		LLRF Permit C4		
	SSA Permit C1	SSA Permit C2		SSA Permit C3	SSA Permit C4		
	SSA DC Permit C1	SISA DC Permit 0	2 🕘	SSA DC Permit C3	SSA DC Permit C4	•	
	MPS Permit C1	MPS Permit Ca		MPS Permit C3	MPS Permit C4		

 FPP PC
 No couple dues voltage C L DE

 Statistical de la couple de la

- A single cavity prototype was tested with a cavity at CMTF last year
- New 4-cavity RFPI chassis was installed at CMTF last month.
- Testing is continuing with remote participation of LUT
- RFPI FDR was completed in June 2024

Master Oscillator and Reference Line - Status

- System block diagram complete.
- Reference line RF simulations nearly complete.
- Building locations and line lengths determined.
- Bill of material complete parts have been ordered for testing.
- Lab space ready for full system assembly and testing.
- Master Oscillator source is in the process of being measured.

PIP-II LLRF FDR Introduction

• FDR planned for mid 2025

Booster Injection – Beam Pattern Generator

- Prototype Tested at PIP2IT
- Final design replaces obsolete AWG and replaces Labview interface with EPICS

Beam Pattern Generator Upgrade

Final Design Architecture

COTS Hardware Components

P. Varghese

On Momentum Booster Injection Scheme for PIP-II

Proposed overlap area for beam injection. The red dots are representative of beam in the incoming Linac buckets, the green dots are after 292 turns. Linac bucket centroids are are chosen to be in the range {-0.7π, -0.15π} or {0.15π, 0.7π}

PIP-II Document 4023-v1

WFE and HWR LLRF Controller Upgrade

12 Months Look ahead

- pHB650 Cryomodule testing at CMTF provided the opportunity to test pre-production hardware/software components for LLRF and RFPI(IKC)
- LLRF Final Design Review July 17, 2024
- STC single cavity testing provides additional testing opportunities.
- Beam Pattern Generator upgrade will start this month with an FDR in mid 2025
- EPICS control software and LLRF hardware can be tested with available cavity emulators
- LLRF system firmware/software documentation project is progressing well and will continue till FNAL team is fully trained in maintaining the code base
- Starting warm front end LLRF controller upgrade this year

Summary

- A number of LLRF hardware components have been tested and verified to meet project specifications
- Firmware, Software and EPICS interfaces are heavily leveraged from LCLS-II
- Detailed documentation of the LLRF system firmware/software is making good progress
- Cryomodule testing will be a continued test bed for LLRF development where we will work with all cavity types, further reducing risks.
- We have a strong DOE collaboration in place with the depth to carry us through the completion of the project (Fermilab, LBNL, Jefferson Lab and SLAC)
- Expect key contributions from International partners

Thank you for your attention!

Backup Slides

Beam-based Phase Calibration

• In theory the average beam phase can be computed from cavity field due to beam-loading

$$\phi_{\rm b} = \tan^{-1} \left(\frac{\int_{t_0}^{t_1} V_{\rm cav-beam}^Q(t) dt}{\int_{t_0}^{t_1} V_{\rm cav-beam}^I(t) dt} \right)$$

- However this relies on proper background subtraction and some, albeit minor, assumptions about the profile of the beam
- First test is to try and reconstruct the phase of an ideal disturbance that is driven by the LLRF system
 - Some unexpected behavior is still under investigation
- Top: Integrated cavity voltage due to the ideal disturbance as a function of phase
- Bottom: Difference between reconstructed phase and drive phase as a function of the drive phase

HWR Cavity Detuning Histograms

Beam-based Phase Calibration

Integrated cavity field due to beam loading as a function of the drive phase for an ideal disturbance driven from the LLRF system

Integrated cavity field due to beam loading as a function of the drive phase for a 4.9mA beam in the PI-Test bunching cavity. Note the I and Q components are not symmetric.

J. Edelen

HWR Amplitude and Phase Regulation Short Term(5 min) In Loop Measurements (No Beam)

HWR Amplitude and Phase Regulation									
	Cavity4	Cavity5	Cavity6	Cavity7	Cavity8				
Cavity Field Setpoint (MV/m)	2.89	6.04	8.94	8.5	8				
Amplitude Regulation (rms) %	0.0135	0.0106	0.0101	0.0081	0.0103				
Phase Regulation (rms) deg	0.0228	0.0065	0.0056	0.0055	0.0062				
Feedback Proportional Gain	1000	1000	1000	1000	1000				
Feedback Integral Gain (rad/sec)	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000				
PIP-II Specifications									

- Amplitude Regulation (individual cavity) < 0.06%
- Energy Stability (Linac)

•

Phase Regulation

< 0.01% < 0.06 deg

LCLS-II and PIP-II Overlaps

40 7/17/24

SSR1 Piezo Transfer Functions

Swept sinusoidal excitation of the tuner piezo actuators and response of cavity detuning depth Response Peaks are mechanical resonances which make broadband feedback a challenge

