

TOAD slow control and PVT measurements

TOAD update for ND-GAr Meeting

Hank Hua

July 12, 2024

Outline

- Introduction to TOAD and TOAD electronics
- TOAD slow control
- PVT measurements
- ♦ Quick TOAD update
- ✦ Summary and outlook

TOAD slow control and PVT measurements

Introduction What is TOAD?

- ✤ Teststand for Overpressurised Argon Detector
- Located at Fermilab for low energy hadron beam
- 🔶 Design
 - High pressure gas TPC (1 m³) 5 Bar
 - Ar-CH $_4$ ratio 96:4
 - Charge based readout using ALICE outer read out chamber (OROC)
 - Testing readout electronics for ND-GAr

Introduction **TOAD electronics**

- ◆ 156 Front End Cards (FEC) perform digitisation and zero-suppression, O(10k) channels
- 3 Power, Aggregation and Timing (PAT) board aggregates data received, synchronises with timing system, and sends to DAQ

TOAD slow control and PVT measurements

Introduction PAT components

 Field programmable gate array (FPGA) and various external components to control power, aggregation, and timing

DUA

Introduction PAT components

 Field programmable gate array (FPGA) and various external components to control power, aggregation, and timing

♦ Power

- DC/DC converter converts voltage from power supply to those usable by the FPGA and FECs
- I/O expander controls power delivery to each FEC

Introduction PAT components

 Field programmable gate array (FPGA) and various external components to control power, aggregation, and timing

Aggregation

- 7 FEC groups, 8 FECs per group
- Multiplexer controls the communication with FECs, 2 multiplexers per group
- Data stored in buffers within FPGA
- 🔶 Timing
 - DUNE Timing System (DTS) can be integrated

TOAD slow control and PVT measurements

Hank Hua (h.hua23@imperial.ac.uk)

Introduction Communication protocols

- How to talk to different components and devices?
- Read and write to registers
- ♦ Within FPGA
 - 32 bit registers inside FPGA firmware
 - Communication via IPBus
- External devices
 - We can only communicate with FPGA
 - Commercial slow control interfaces, e.g. I2C, through FPGA
 - Multiple registers per device, size not fixed

DC/DC output current register

DC/DC output voltage register

TOAD slow control **Design**

IMPERIAL

TOAD slow control and PVT measurements

+

Hank Hua (h.hua23@imperial.ac.uk)

TOAD slow control Firmware registers

- Registers implemented by firmware, within FPGA
- A base firmware register class, contains general methods
- Inherited by physical registers
 - Register-specific bits map
 - Accessible methods to read/write register
- I2C master register controls I2C communication with external devices

7/19

TOAD slow control External devices

- We are only connected to FPGA, have to talk to I2C master register to access external devices
- ✤ I2C register base class
 - I2C commands for I2C master register to read/write external registers

- Inherited by external devices
 - Device-specific register map
 - Accessible methods

TOAD slow control Low-level scripts

IMPERIAL

 More user-friendly ^{Base class} command line interface Inherited

register

class

- Typically instantiates specific register class
- I2C-related scripts read device register map and Low-level write on I2C master register

TOAD slow control High-level scripts

IMPERIAL

 Combines various low-level scripts to perform more actions

+ Examples:

- Perform noise measurement across all FECs
- Program all FECs with specific configurations
- Periodically record power output and temperature from DC/DC

PVT measurements Motivation

- A functional slow control system gave us an opportunity for PVT studies
- Why do we care about pressure, volume, temperature (PVT) measurements?
 - 1. Previous test at RHUL maximum gain achieved at $4.835\,{\rm bar}$ pressure and 4.1% ${\rm CH}_4$
 - 2. Pressure increase due to heat could exceed the maximum pressure if not careful
 - 3. Rate of leakage, rate of stabilisation
- No specific gas temperature monitor have to infer from pressure measurement

TOAD slow control and PVT measurements

11 / 19

PVT measurements Pressure measurements

- Pressure is measured by a manometer inside the vessel
- A separate slow control system provides continuous monitoring

12/19

Hank Hua (h.hua23@imperial.ac.uk)

• PVT measurements Overnight pressure change

- Pressure decreases overnight
- ◆ Fitting exponential function f = Ae^{bt} + c gives a time constant 1/b ~ 9 hours
- ✤ Future measurement considerations:
 - Longer duration
 - Thermometer on the vessel to correlate with temperature change

PVT measurements DC/DC measurements

- DC/DC components on each PAT board can measure voltage and current delivered to the FECs, and temperature
- Slow control system provides continuous monitoring of these parameters

PVT measurements Pressure equilibrium

- How long does it take for the pressure to stabilise given a change in temperature?
- Estimate when $\dot{P} < 1 \, \text{mbar/hr}$ from fit
 - FEC powered: t = 8.6 hours
 - FEC powered and clocked: t = 7.0 hours

Hank Hua (h.hua23@imperial.ac.uk)

• PVT measurements Gas temperature

- Assumption: gas at room temperature when filling
- ★ Measured a $\Delta P = 0.156$ bar, PV = nRT gives $\Delta T \sim 15$ °C
- ◆ But DC/DC temperature increased by ~ 35 °C ⇒
 vessel is dissipating ~ 20 °C worth of heat
- Future studies: correlate power dissipated by DC/DC with temperature change

PVT measurements What pressure should we fill to?

- ✤ Burst disk of 5 bar installed to the vessel
- From ideal gas law,

$$\frac{P_{\rm final} - P_{\rm fill}}{P_{\rm fill}} = \frac{\Delta T}{T_0} \implies P_{\rm fill} = \frac{P_{\rm final}}{1 + \Delta T/T_0}$$

- ✤ For a 15 °C rise in gas temperature from room temperature, maximum fill pressure $P_{\text{fill, max}} = 4.76$ bar

Conclusion TOAD update

- Operation firmware ready can now perform continuous readout from FECs instead of having to trigger
 - + DC/DC on PAT boards can reach $90\,^{\rm o}{\rm C}$ in this mode at $1.3\,{\rm bar}$
- Pump-and-purged several cycles to remove dust / moisture in the vessel
- ♦ Sparking at OROC anode could be due to expansion of OROC stretching the wires
- ◆ Performed noise measurement at 4.5 bar Ar-CH₄ (96:4) demonstrated that electronics function under 4.5 bar

Conclusion Summary and outlook

- ✦ Scalable and modular slow control system for TOAD
- ✤ Preliminary PVT analysis with slow control system
- Upcoming: migrate slow control code to C++ and integrate with DUNE-DAQ

Backup Overnight leakage

- Pressure decreases overnight
- Leakage + temperature change (minor)
- ✦ Fitting an exponential function $f = Ae^{bt} + 1$ gives a time constant $1/b \sim 1321$ hours

