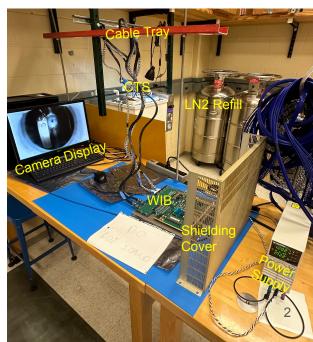
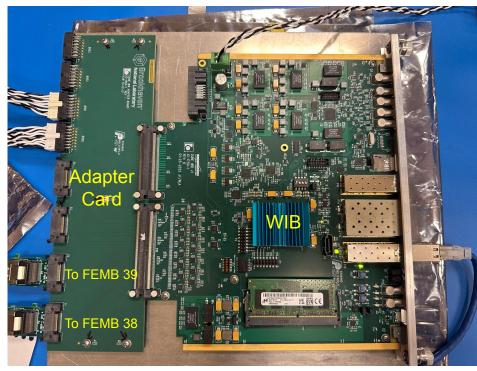

DUNE CE Testing @ Cincinnati

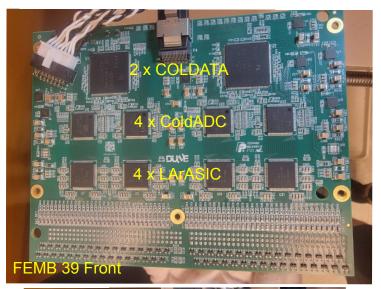
Josh Satter, Yolandah Tulina, Vignesh Karthikeyan, Hanel Kamdar, Cameron Wilson, Alex Sousa


Thanks to Cheng-Ju Lin, Roger Huang, and Shanshan Gao for their help!

July 12th 2024

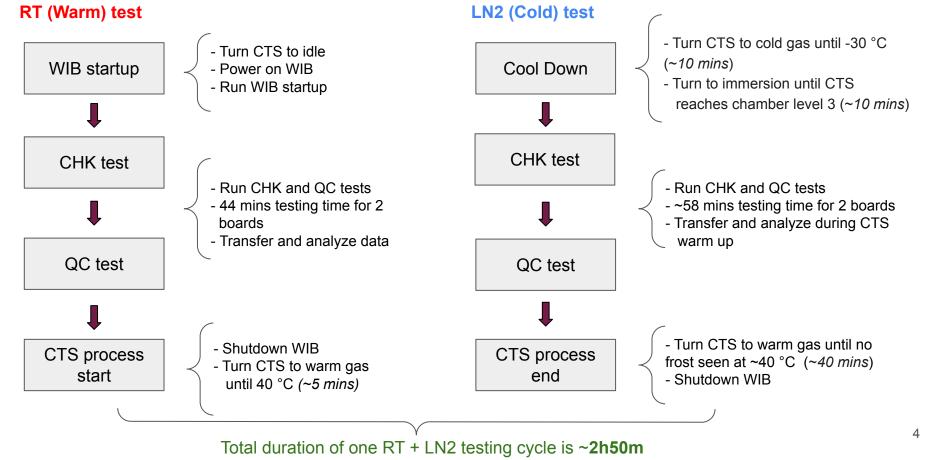
Updated UC Testing Setup





Components Being Tested

WIB Firmware as reported by wib_startup.py: WIB FW generated at 2023-9-24 55:8:9


- Note: ToyTPC not available for our testing

Typical Testing Cycle

Testing Monitoring and Metadata

- Created spreadsheet where various useful metrics during testing are recorded and monitored.
 - Test and CTS process duration are computed automatically (see bottom figure)
 - Also kept track of environment, current drawn, and CTS dewar volume (see right figure)

Room Temp	Humidity	PS Avg. Currrent Drawn During Test (A)	Dewar Starting Vol (CTS Process)	Dewar Vol (Immersion L3 Start)
22.2 °C	73.10%	3.04	N/A	N/A
22.4 °C	73.20%	3.1	N/A	N/A
22.8 °C	72.60%	2.45	1590	1570
22.9 °C	72.60%	3.25	1590	1570
23.2 °C	72.00%	3	N/A	N/A
23.2 °C	71.80%	3.13	N/A	N/A
23.2 °C	69.30%	2.7	1411	1383
23.2 °C	69.10%	3.17	1411	1383

Date	Test #	Test Type	CHK or QC	Board #'s	CTS Process Start	Test Start	Test End	CTS Process End	Test Duration	CTS Process Duration
06/17/2024	1	Warm 🝷	СНК 🝷	38,39	N/A	9:47	9:48	N/A	00:01	N/A
06/17/2024	2	Warm -	QC -	38,39	N/A	9:51	10:33	N/A	00:42	N/A
06/17/2024	3	Cold 🝷	СНК 🔫	38,39	10:41	11:06	11:07	12:43	00:01	02:02
06/17/2024	4	Cold -	QC -	38,39	10:41	11:08	12:08	12:43	01:00	02:02
06/17/2024	5	Warm 🝷	снк 🔸	38,39	N/A	12:50	12:52	N/A	00:02	N/A
06/17/2024	6	Warm -	QC -	38,39	N/A	12:54	13:36	N/A	00:42	N/A
06/17/2024	7	Cold -	СНК 🝷	38,39	13:36	14:03	14:05	15:40	00:02	02:04
06/17/2024	8	Cold -	QC -	38,39	13:36	14:06	15:01	15:40	00:55	02:04

Improved testing procedures

Procedure Checklist

- Created checklist to ensure various steps in the testing procedure are not skipped, are followed in the correct order, and all bookkeeping data is recorded
- Assigned one student as Test Manager for each day of testing

	Daily Cycle Number:	Manager:	
ŧ	Procedure	Initials	Comments
1	WIB is turned on: 12 V @ ~1.6V		
2	Ssh to WIB, get into script directory		
3	Ran wib_startup.py?		
4	Checked disk space in WIB (< 80%)? If more space needed, run clear_data.py		
5	Record date, test number, test type, CHK or QC, board #, room temp, room humidity, and construction.		
6	Start CHK Warm Test; Record Test Start time and the average current.		
7	If CHK test completed, record Test End Time.		
8	Begin QC Warm testing: Repeat step 5, record Test Start Time and the average current.		
9	If QC test completed, record Test End Time.		
10	Turn on "Warm Gas" for 10 minutes (40-50°C) and record the CTS Process Start and the Dewar Starting Volume.		
11	Turn the CTS to "Cold Gas"		
12	Once the CTS reaches -30°C, turn to "Immersion" and record the Dewar Vol (Immersion L3 start) .		
13	Once the chamber level reaches L3, start the CHK Cold Test, repeat step 5, record Test Start and avg current.		
14	If CHK test completed, record Test End Time.		
15	Begin QC Cold testing: Repeat step 5, record Test Start Time and the average current.		
16	If QC test completed, record Test End Time.		
17	Transfer data from WIB to test stand using get_ana_data.sh		
18	If testing is completed, CTS back to "Warm Gas"		
19	Once no frost or condensation are visible inside the CTS, record the CTS Process End time.		
20	If testing done for the day, shutdown WIB, turn off CTS camera and light, turn off CTS. Otherwise, start new.		

UC DUNE COLD ELECTRONICS TESTING Testing Checklist

Improved testing procedures

Workflow Streamlining using Python and Bash Scripts

- Modified certain scripts to simplify bookkeeping for each test
- Wrote bash scripts to automatically run processes to reduce human error and save time
- Summarized all relevant commands into procedures document

- Open a new terminal (this will be your WIB terminal) ping 192.168.121.123, get response, ctrl-c to terminate ssh wib
- 5. cd BNL_CE_WIB_SW_QC/
- 6. python3 wib_startup.py (once every time WIB is turned on)
 - a. Note that this script will sync WIB date/time with the server (no passwd input required)
- 7. Open another new terminal on the side to use for later (this will be your test stand terminal)

Run a checkout test

```
    To run a CHK test (in the WIB terminal):

    python3 femb_assembly_chk.py 0 save 5

        (If you need to run more than one FEMB, add the slots separated by a space

        e.g python3 femb_assembly_chk.py 0 1 save 5)
```

2. To transfer data from WIB to test stand and analyze it (in the test stand terminal): get_ana_data.sh

Run QC test

3. To run a QC test (in the WIB terminal): python3 QC_top.py 0 1

4. To transfer data from WIB to test stand and analyze it (in the test stand terminal): get_ana_data.sh

Workflow Streamlining using Python and Bash Scripts

Changes made to existing *python* scripts and new *bash* macros written:

WIB startup (wib_startup.py)

- Updates date and time on WIB
- Checks if WIB storage usage is greater than 80% and encourages tester to run clear_data.sh macro

Clear data (clear_data.sh)

- Checks whether all data folders on WIB have been transferred to test stand
- Clears all data off the WIB (if data hasn't been transferred, tester is requested to run data transfer)

Data collection (femb_assembly_chk.py or QC_top.py)

- Automatically records date and time of test
- Requests run # from tester
- Labels raw_data folder with format: femb#_date_run#_env

Data transfer and analysis (get_ana_data.sh)

- Automatically transfers data from WIB to test stand and analyzes it immediately (Tester has option to perform analysis or transfer data only)
- Labels reports folder with results with same format:
 femb#_date_run#_env

```
[janus:BNL_CE_WIB_SW_QC_uc_dune$ get_ana_data.sh
[Transfer CHK or QC: (CHK)
[Analyze the data y/n:(y)
```

```
These are the available CHK files:
femb38_femb39_07_09_2024_run08_RT_0pF
```

```
Now transferring

PWR_SE_200mVBL_14_0mVfC_2_0us_0x00.bin

Raw_DIFF_900mVBL_14_0mVfC_2_0us_0x10.bin

logs_env.bin

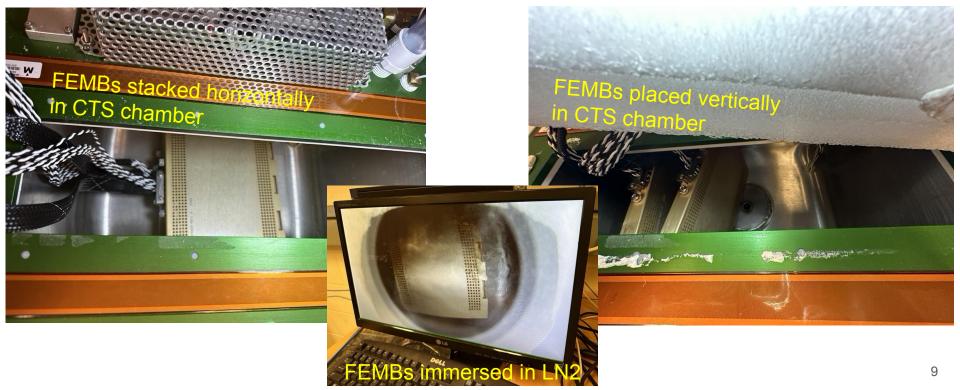
Mon_200mVBL_14_0mVfC.bin

MON_PWR_SE_200mVBL_14_0mVfC_2_0us_0x00.bin

MON_PWR_DIFF_200mVBL_14_0mVfC_2_0us_0x00.bin

Raw_SE_900mVBL_14_0mVfC_2_0us_0x10.bin

Raw_SE_200mVBL_14_0mVfC_2_0us_0x00.bin
```


Transfer of CHK files complete
Now Analysing...
/Users/uc_dune/Library/Python/3.11/lib/python/site-packages/fpdf/__init__
warnings.warn(
./tmp_data/CHK/femb38_femb39_07_09_2024_run08_RT_0pF/

Testing Observations and Problems

 Ran 3 consecutive cold cycles with 2 FEMBs stacked horizontally, and 4 consecutive cold cycles with them placed vertically

Dif

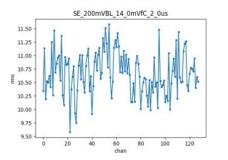
- The following slides summarize observations and problems encountered during testing.

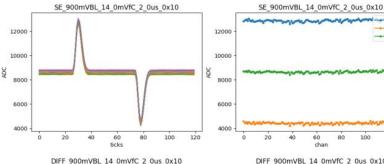
CHK Warm Results

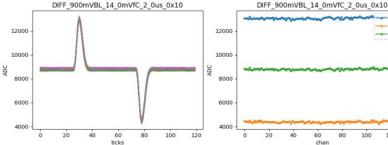
Typical example of "reasonable" CHK tests

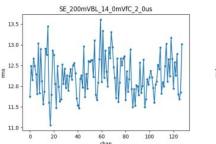
 SE 200mVBL 14 0mVfC 2 0us

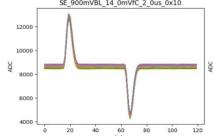
- D05

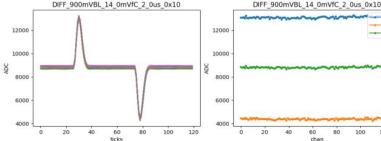

ped

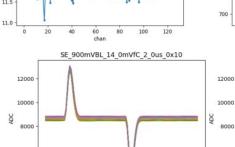

DO


neg


ned


chan





SE 200mVBL 14 0mVfC 2 0us

chan

SE 900mVBL 14 0mVfC 2 0us 0x10

chan

peo

DO

neg

ped

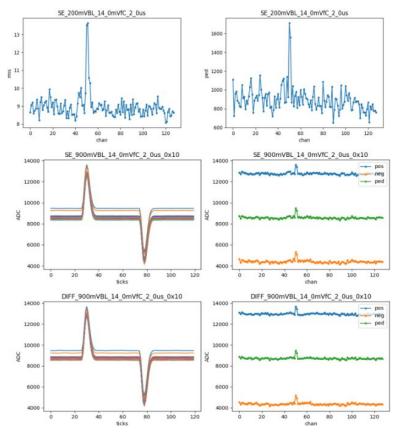
CHK Warm Results

Example of "problematic" CHK Reports

120

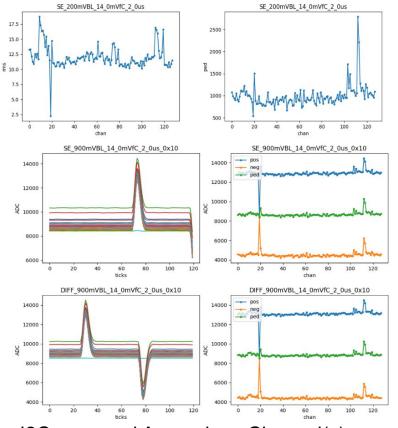
per

120


nec

ped

120



I2C error (waveform trigger not synced)

Anomalous channel(s) response

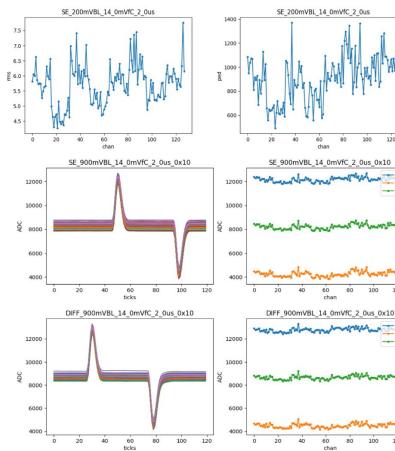
CHK Warm Results Example of "problematic" CHK Report

I2C error and Anomalous Channel(s)

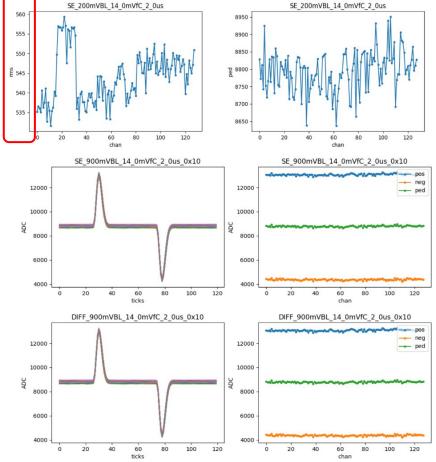
CHK Warm Test FEMB 38 Scorecard (abridged)

Pink run numbers denote I2C errors

Date	6/17	6/17	6/18	6/18	6/20	
Run Number	1	5	1	6	1	
Time	9:47	12:50	9:23	12:19	9:37	
Power Measurement	Ρ	Ρ	Ρ	Ρ	Ρ	
Temperature	Ρ	Ρ	Ρ	Ρ	Ρ	
BGP	Р	Р	Ρ	Р	Р	Passed
RMS	F	Р	Р	Р	Р	for FEMB 39 in
200mV baseline	F	F	F	F	F	some tests
Pulse_SE	F	F	F	F	F	Failed
Pulse_DIFF	Р	Р	F	Р	F	for all warm
ADC Monitoring	Р	P	Ρ	Р	Ρ	tests

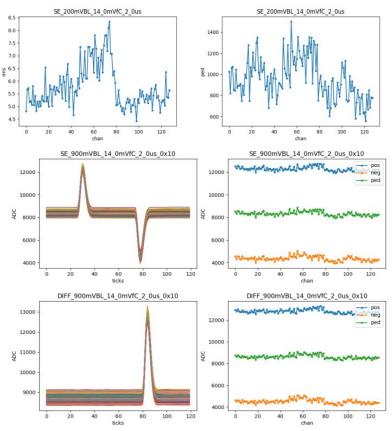

- 18 / 42 reports showed I2C errors, 42.9%.
- 5 / 42 reports showed anomalous response, 12%.
- 1 / 42 reports showed both, 2.4%.

CHK Cold Results Example of Reasonable-looking Reports

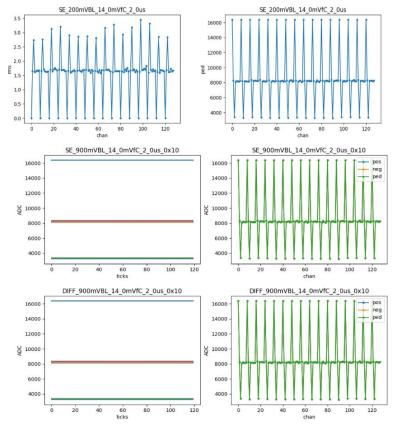

120

120

120

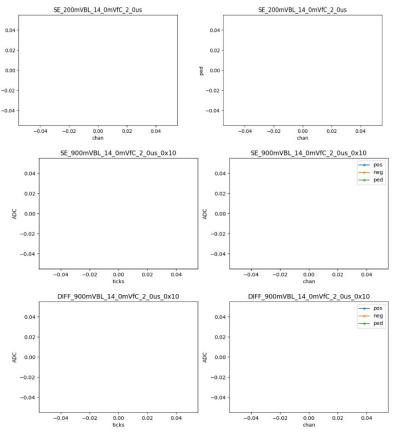


Note very large RMS scale in this run



13

CHK Cold Results Examples of "Problematic" Reports



I2C error (waveform trigger not synced)

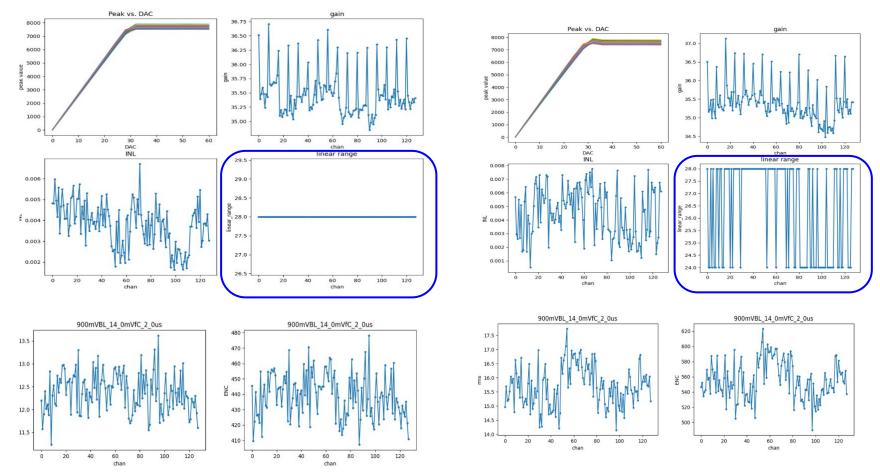
No waveform shape for any channel

CHK Cold Results Example of "Problematic" Report

Blank graphs

CHK Cold Test FEMB 38 Scorecard (abridged)

- Blue denotes No waveform shape for any channel
- Purple denotes blank graphs


		_		_	_	_	_		
Date	6/11	6/11	6/11	6/12	6/12	6/12	6/12	6/12	6/12
Run Number	3	4	6	3	5	8	9	10	12
Time	12:07	12:13	13:31	10:42	11:56	15:00	15:03	15:09	16:11
Power Measurement	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
Temperature	F	F	F	F	F	F	F	F	F
BGP	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
RMS	F	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
200mV baseline	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
Pulse_SE	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р
Pulse_DIFF	F	F	F	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
ADC Monitoring	F	F	F	F	F	F	F	F	F

- Only 38 / 103 tests resulted in generated reports.
- 5 / 38 reports showed I2C errors, 13%.
- 12 / 38 reports showed graphs with straight lines only, 32%
- 9 / 38 reports had blank graphs, 23%

15

Examples of QC Warm Reports (CALI2)

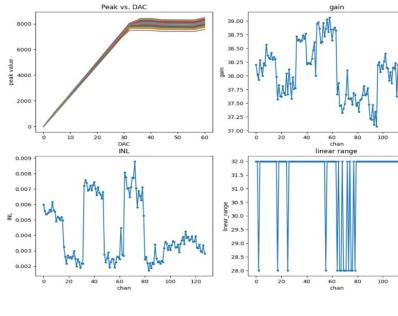
• This portion of the QC test suite leads to channel saturation (expected), but variations seen in "linear range" plots

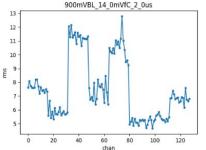
Summary of QC Warm Results for two FEMBs

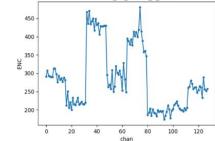
FEMB 38	Scorecard	(abridged)
---------	-----------	------------

FEMB 39 Scorecard (abridged)

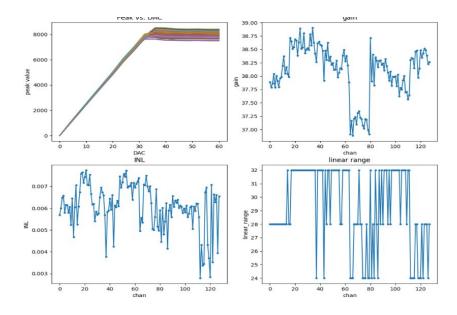
Date	6/11	6/12	6/12	6/13
Run Number	2	2	7	2
Time	10:44	09:07	13:13	09:22
Power Consumption	F (ch 104, bchip 6)	F (ch 104, bchip 6)	F (ch 104, bchip 6)	х
Leakage Current	F (ch 104, bchip 6)	F (ch 104, bchip 6)	F (ch 104, bchip 6)	x
Pulse Check	F	F	F	x
RMS Check	F	F	F	x

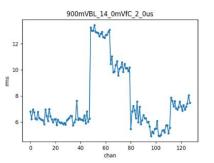

Date	6/11	6/12	6/12	6/13
Run Number	2	2	7	2
Time	10:44	09:07	13:13	09:22
Power Consumption	F (ch 24, bchip 1)	F (ch 24, bchip 1)	F (ch 24, bchip 1)	х
Leakage Current	F (peak: ch 112, bchip 7) (base: ch 48, bchip 3)	F (peak: ch 112, bchip 7) (base: ch 48, bchip 3)	F (peak: ch 112, bchip 7) (base: ch 48, bchip 3)	x
Pulse Check	F	F	F	х
RMS Check	F	F	F	x

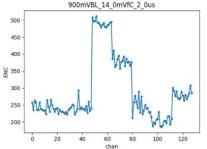

• Different channels fail between the two FEMBs, but neither of the FEMBs pass any of the reported QC tests (for CALI2)


Examples of QC Cold Reports (CALI2) Same observations as for Warm results

120


120





900mVBL 14 0mVfC 2 0us

Summary of QC Cold Results for two FEMBs

FEMB 38 Scorecard (abridged)

FEMB 39 Scorecard (abridged)

Date	6/11	6/12	6/12	Date	6/11	6/12	6/12
Run Number	5	4	11	Run Number	5	4	11
Time	12:21	10:47	15:15	Time	12:21	10:47	15:15
Power Consumption	F (ch 64,67,72,74,79, bchip 4)	Ρ	Ρ	Power Consumption	Р	F (PWR_DIFF, PWR_SE_SDF, PWR_DIFF)	Р
Power Cycles	F (ch 64,67,72,74,79, bchip 4)	F (PWR_DIFF, PWR_SE_SDF)	F (PWR_DIFF, PWR_SE_SDF)	Power Cycles	F (PWR_DIFF, PWR_SE_SDF)	F (PWR_cycle0_SE, PWR_SE_SDF, PWR_DIFF)	F (PWR_DIFF, PWR_SE_SDF
Leakage Current	F (base: ch 94, bchip 5)	Р	Р	Leakage Current	F (ch 61, bchip 3, ch 25, bchip 1)	F (ch 61, bchip 3, ch 25, bchip 1)	F (ch 61, bchip 3, ch 24/25, bchip 1)
Pulse Check	F	P	P	Pulse Check	F	F	F
RMS Check	F	Р	P	RMS Check	F	F	F

- Different channels fail between FEMBs, as observed for Warm tests
- However, for some of the cold tests, FEMBs now pass some of the QC variables (CALI2)
- 7 out of 18 reports had blank graphs only, 38.9%
- Full suite of test results and complete scorecards can be perused in these <u>132 slides</u>!

Summary of Observations

- No obvious differences seen in test results between vertical and horizontal orientation of the FEMBs inside the CTS
- Apparently random failure modes during warm testing not understood, including no waveforms for all channels and blank graphs in reports
 - No obvious correlation with environment, CTS behavior, or which FEMB was being tested
- Majority of CHK and QC cold tests did not run or did not produce reports
 - FEMB 38 more affected than FEMB 39, but otherwise no obvious reasons found for this behavior
- Given the random behavior seen between Pass/Fail in Warm and Cold testing scorecards, it is unclear to us what we would classify as a successful CHK/QC test for a given FEMB
 - Perhaps these FEMBs 38 and 39 were known to have this random behavior from their testing at BNL?
 - Have the 17/25 FEMBs tested successfully at BNL been subjected to multiple cold cycles and behaved consistently well for all cycles?
- During this week, ran cold cycles on FEMBs without boxes, results are consistent with the above so far
- Suggestions for additional studies or different warm testing configurations are welcome!
 - Have removed CTS lid and will be shipping to BNL early next week