Introduction to GRAIN detector

Lea Di Noto University of Genova and INFN Genova

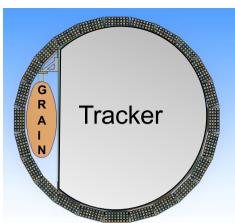
DUNE CSN1 Review July, 11th 2024

Why GRAIN in SAND?

- DUNE ND complex needs to constrain systematic uncertainties
- SAND is the unique detector permanently on axis

GOALS of SAND

- monitor for beam parameter changes on a weekly basis
- perform cross-section studies on different nuclear targets
- ν_{μ} , ν_{e} , $\bar{\nu}_{\mu}$, $\bar{\nu}_{e}$ on-axis sample


for a robust LBL analysis in combination with ND-LAr+TMS

Interactions on ECAL

Interactions on Tracker

Interactions on GRAIN

Events in GRAIN

Target	CP optimized FHC (1.2MW, 2y)				CP optimized RHC (1.2MW, 2y)			
	$ u_{\mu}$ CC	$ar{ u}_{\mu}$ CC	$ u_e$ CC	$ar{ u}_e$ CC	$ u_{\mu}$ CC	$ar{ u}_{\mu}$ CC	$ u_e$ CC	$ar{ u}_e$ CC
CH_2	13,010,337	624,330	192,118	31,902	2,035,973	4,870,562	91,004	69,278
Н	1,222,576	111,574	<i>18,396</i>	5,557	194,216	906,130	8,712	12,434
С	1,547,011	67,294	22,799	3,458	241,710	520,287	10,800	7,460
Ar	3,114,331	121,506	46,384	6,503	480,862	936,489	21,932	13,867
Pb	62,127,600	2,507,940	923,012	130,680	10,375,400	18,222,200	437,284	265,304

0.1 neutrino interactions per spill

A good sample for:

- cross-section constraints / tuning nuclear model
- a comparison with hydrogen interactions

SAND multi-target

$$N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \Phi(E_{\nu}) P_{\rm osc}(E_{\nu}) \sigma_{\rm X}(E_{\nu}) R_{\rm phys}(E_{\nu}, E_{\rm vis}) R_{\rm det}(E_{\rm vis}, E_{\rm rec})$$

at NEAR ~1 SAND LAr interactions

GRAIN requirements

As a **passive** target:

- Impose limits on cryostat - thin volume (minimum number of X_0)
- thin cryostat

As an **active** target:

- There is the needs of R&D for imaging - contribute to the neutrino energy reconstruction, for recovering the energy lost in I Ar
- identify the **interaction vertex** and **tracks** of contained particles (protons, pions)

size and material

INFN DUNE

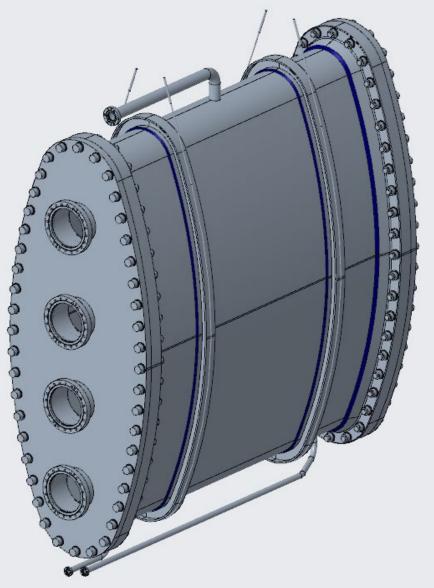
- matching with back-propagated tracks from the tracker.
- select interactions in terms of exclusive final state particles

widens phase space (large angles w.r.t. beam axis, lower momentum + short particles not exiting).

- exploting the high resolution O(200 ps) timing information —
 - SAND is the unique fast detector in the ND complex

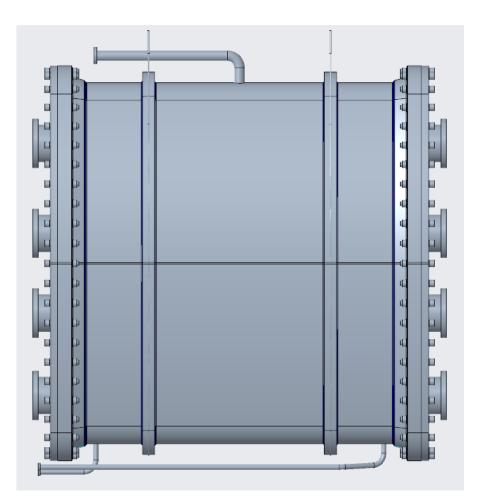
GRAIN: Mechanics

CSN1 review of SAND – Jul 11, 2024

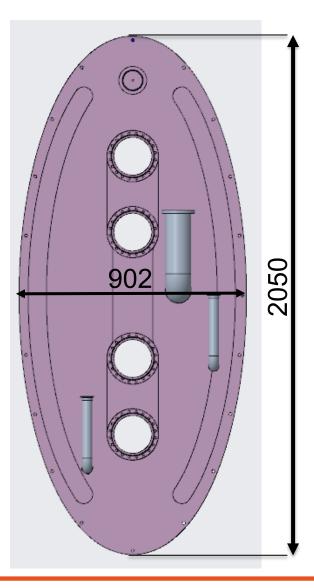

Gianluigi Piazza

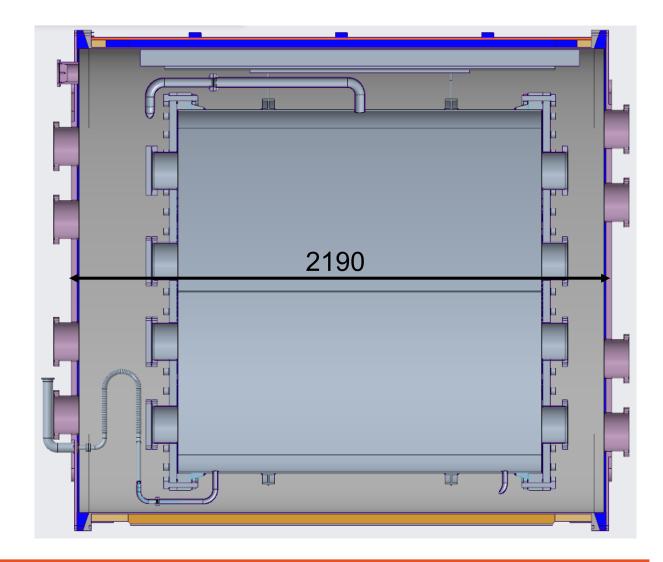
Inner vessel

Preliminary studies has been carried out, but the design has to be certified for EN13445 standards. An order for calculation has already been issued.

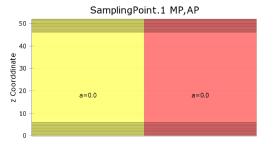

In the meantime, Technetics is conducting a study to validate the identified Helicoflex gasket in order to ensure a leak rate of 10⁻⁸ mbar·l/s

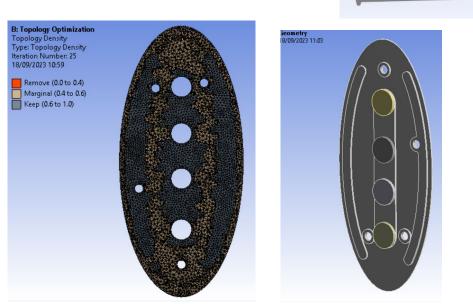
Internal vessel design


- Material: AISI 316 L
- Body wall thickness 6 mm
- Cover thickness 30 mm
- Internal pressure 1,5 bara


4 DN160 CF flanges per side, feedthrough to be defined.

Suspension is provided by 2 stainless steel wire ropes with a thickness of 5 mm


Vacuum tank


Vacuum tank

Lay-up sequence main body:

 [(45/0/45)₁₀] + Core + [(45/0/45)₁₀]
 Core thickness 40 mm

 Covers in aluminum alloy AA7075: Preliminary thickness optimization 12-24 mm

Polar Properties

1.34e+(

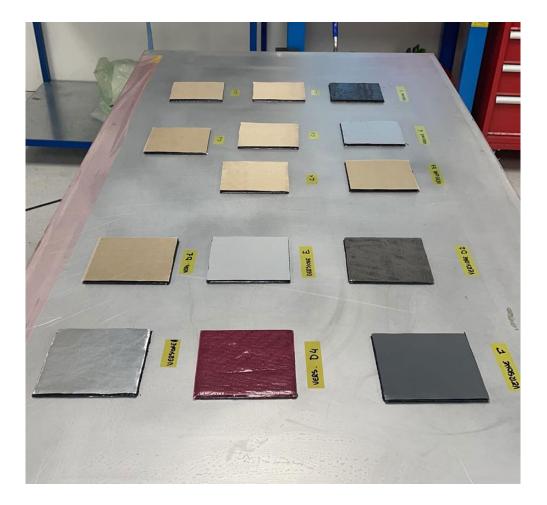
1.01e+04

6.71e+03 3.35e+03

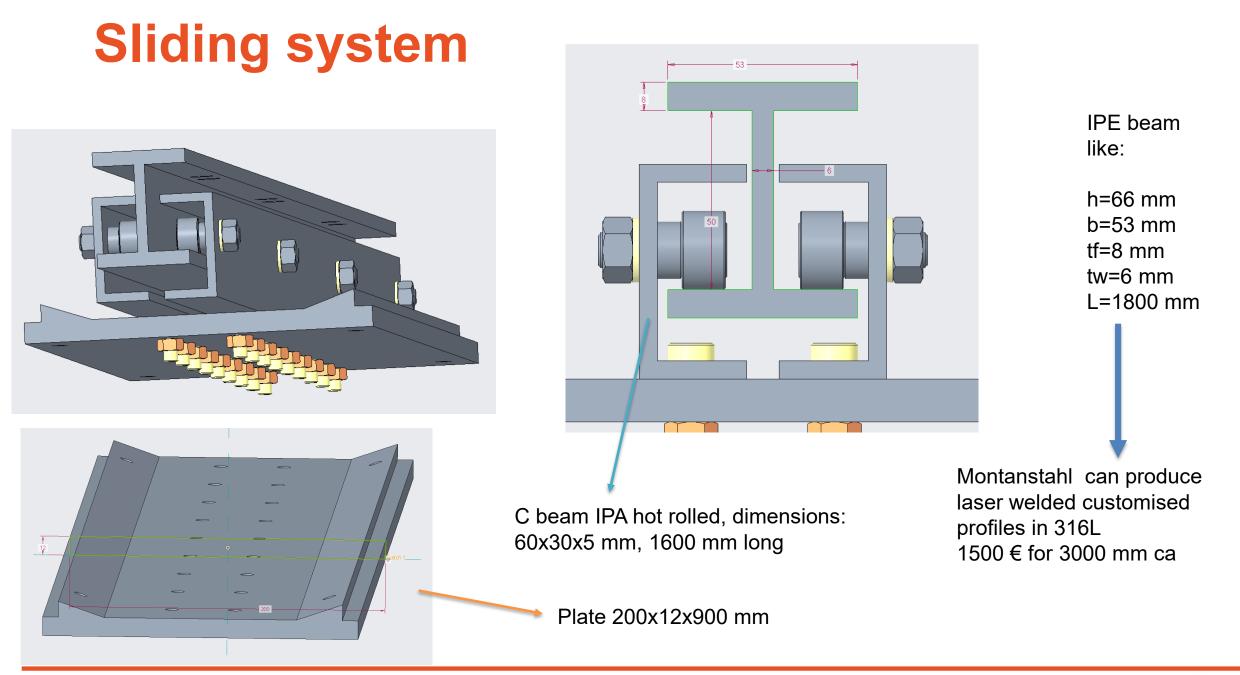
E1 G12

E2/

180

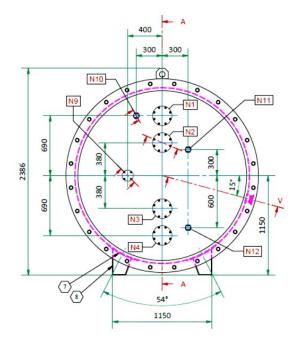


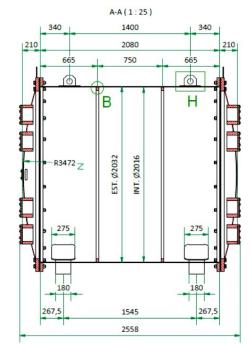
0°

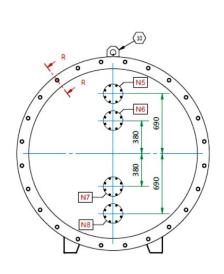

CFRP samples

In order to understand feasibility of vacuum and to choose the best solution for the future mock-up, a campaign of outgassing test is currently underway in LNF.

Different samples with different coatings (aluminum foil, various resins) have been prepared by Refraschini company and are ready to test.

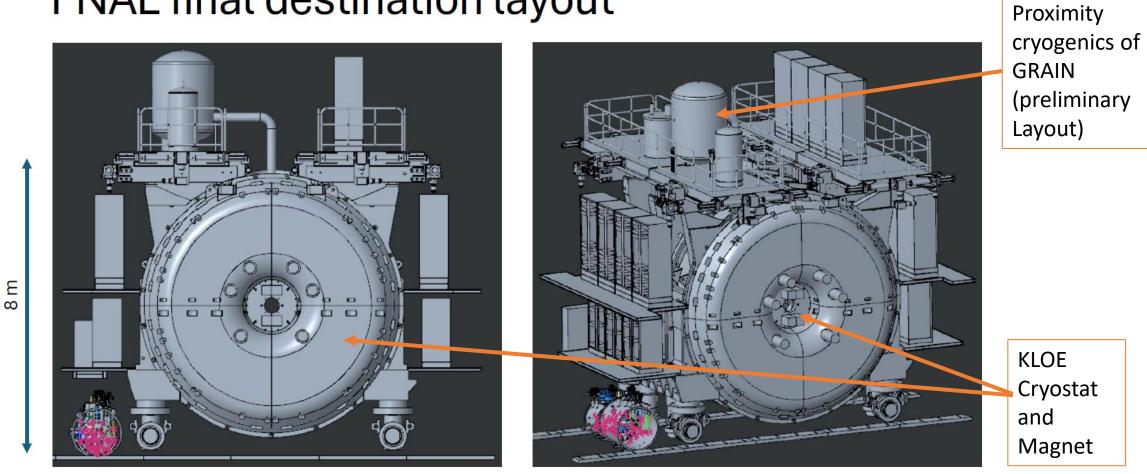





first vacuum tank for LNL facility test

To test cryogenics in LNL, it has been decided to use a temporary stainless steel vacuum tank

Almost all details have been discussed with the company CryoService that is starting to manufacture. It will be ready in 6 months

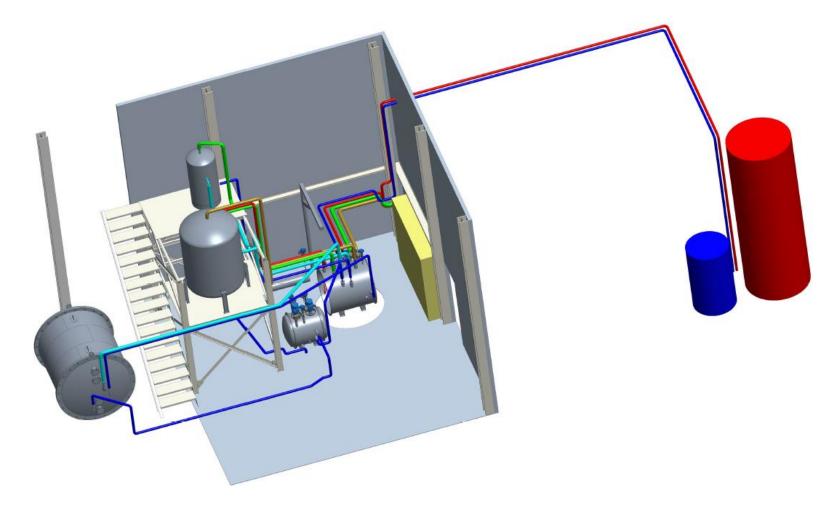


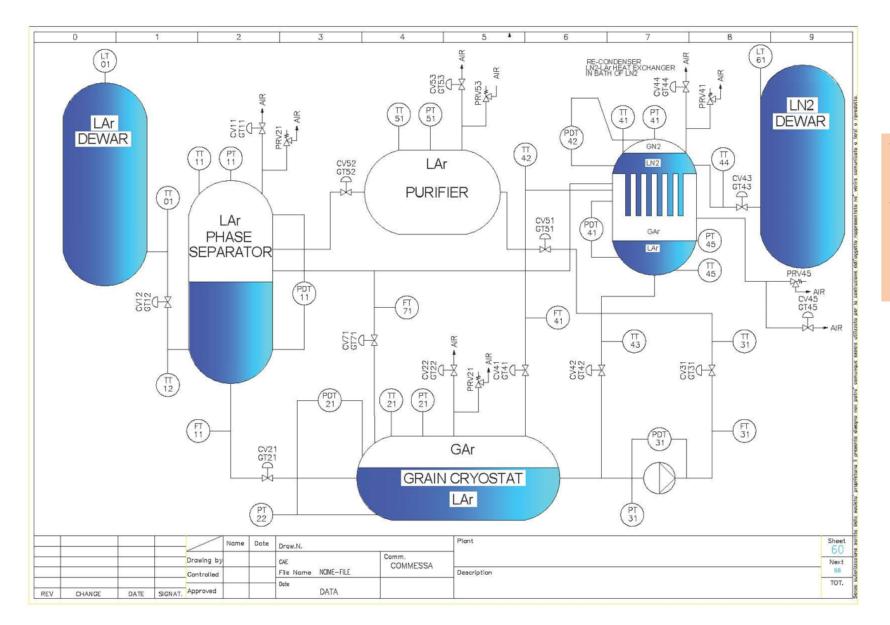
CRYOGENICS FOR GRAIN

CSN1 Review of SAND July 11th-12th 2024

R.Pengo, G.Piazza & the cryogenic service of LNL

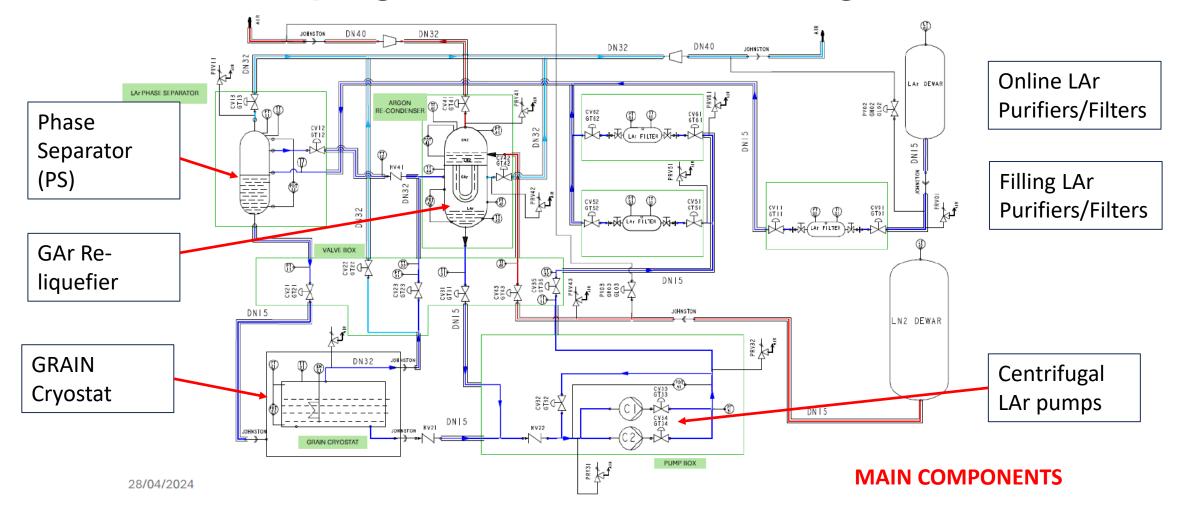
FNAL final destination layout



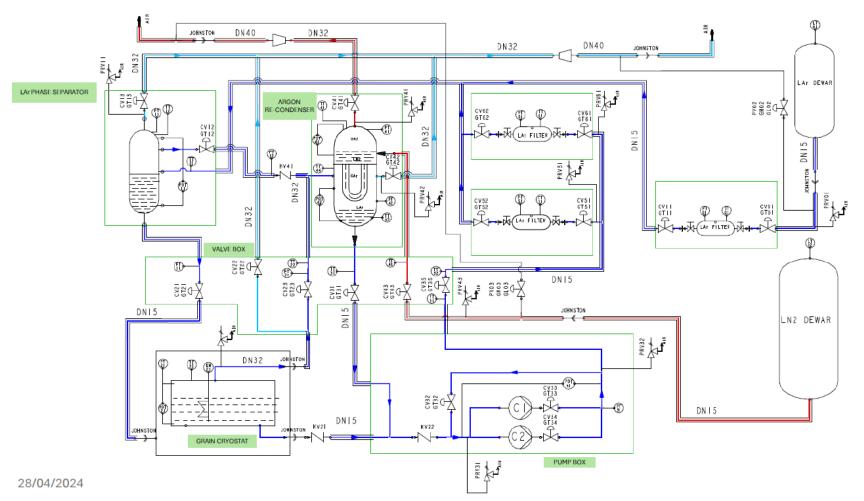

Refurbishment of LNL lab

- Existing LN2 tank outside
- Four new transfer lines (vacuum insulated) are being installed:
 - IN/OUT for LN2/GN2
 - IN/OUT for LAr/GAr

LNL preliminary layout



SIMPLIFIED P&ID


TT: Temperature Transmitter PT: Pressure Transmitter PDT: Differential Pressure Transmitter FT: Mass Flow Transmitter CV: Control Vave PV: Valve ON/OFF PRV: Pressure Relief Valve

GRAIN Piping & Instrumentation Diagram

Normal operation

GRAIN Piping & Instrumentation Diagram

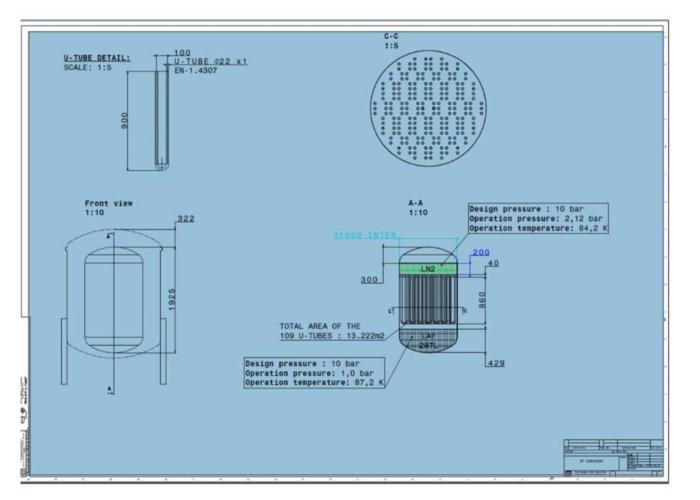
1) <u>Centrifugal</u> <u>pump</u>is circulating the LAr:

- through the purifier
- to the phase separator (PS)

2) The GAr boil-off of both the cryostat and of the PS enter the <u>re-</u> <u>liquefier</u>, where it is liquefied with the <u>aid of LN2</u> at the pressure corresponding to LAr (ca. 2.8 bar)

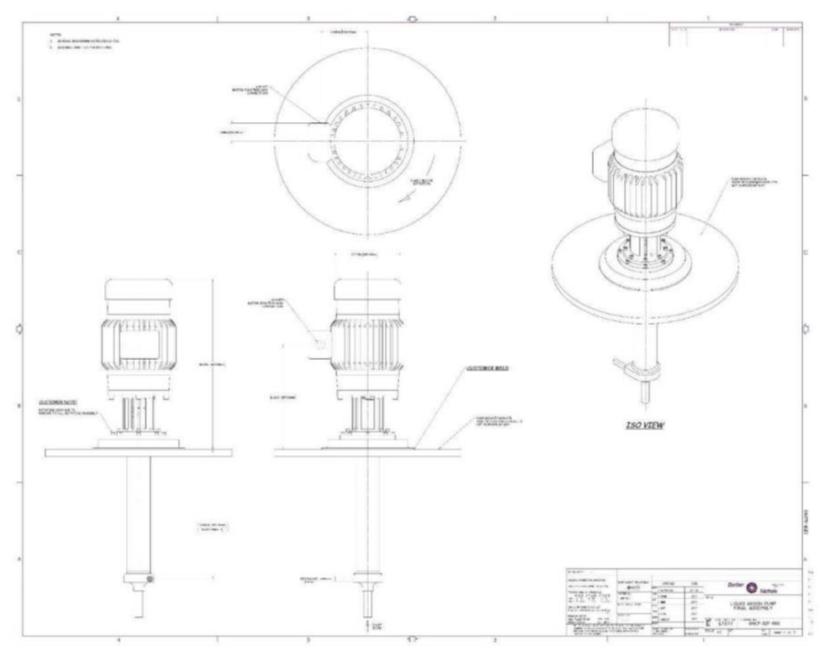
Cryogenic specifications

- Recirculation of LAr will be provided by *centrifugal pumps*: one at LNL, two at FNAL (one redundant)
- *Maximum heat* load 1500 Watt (800 liters LN2 for 24 hours of operation)
- *Mass flow* of LAr max. 20 g/s (one GRAIN volume in 20-24 hours)
- Maximum head (Delta P) necessary: 0.5 bar (3.5 m) at LNL and 1.1 bar (8 m) at FNAL
- Two filters needed (*copper spheres*): one dismountable/replaceable for regeneration
- Control system according to UNICOS CERN (WINCC OA) (see scheme)


Cryogenic specifications (status)

- Recirculation will be provided by centrifugal pumps (one at LNL/two at FNAL, one redundant)
- Maximum heat load 1500 Watt (800 liters LN2 for 24 hours of operation)=> To Be Confirmed
- Mass flow of LAr max. 20 g/s (one GRAIN volume in 20-24 hours)
- Maximum head (Delta P) necessary: 0.5 bar (3.5 m) at LNL and 1.1 bar (8 m) at FNAL=> contacts with Barber&Nichols ongoing
- Two filters needed (copper spheres): one dismountable/replaceable for regeneration => C. Montanari
- Control system according to UNICOS CERN (WINCC OA), the same for LNL and FNAL =>(see detailed scheme prepared by LNL cryogenic service, order placed)

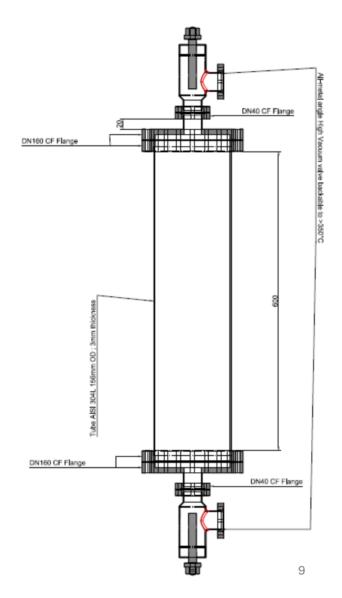
Summary of the design status of the cryogenic components


- <u>Inner vessel (SS)</u>: designed completed
- <u>Vacuum tank</u> for the test facility (SS): designed completed (see G.Piazza talk)
- <u>Vacuum tank</u> for FNAL in Carbon fiber reinforced polymers (CFRP): design advanced
- <u>Centrifugal pumps</u> for LNL (head 3.5 m): design available (B&N)
- <u>Centrifugal pumps</u> for FNAL (head 8 m): new design to be agreed with B&N
- <u>Phase separator</u>: design available
- <u>Re-condenser</u>: design available
- <u>Filters/purifiers</u>: specifications available
- <u>Control system</u>: design ready and order placed for hardware
- <u>Functional logics</u>: to be prepared (UNICOS)

Re-condenser

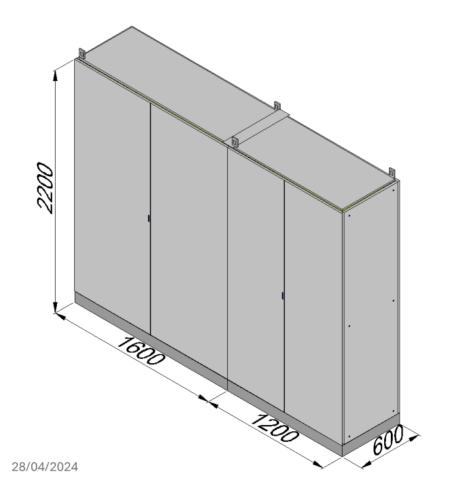
This U-tube heat exchanger is dimensioned for 1500 W. The boil off is produced by the static heat load, detectors heat load and feedthroughs. The GAr formed has to be

re-condensed and sent for gravity to the recirculation pump



Purification filters

Made of molecular sieve (sintered disk) and small spheres of Al2O3 coated with Cu One purifier for the filling and two in parallel for the recirculation


The filters have not been sized and designed yet.

In order to dismount and regenerate the filters there will be placed a CF flange and a manual shut-off valve on both sides; in this way the filter can be removed and installed, preventing air from entering.

28/04/2024

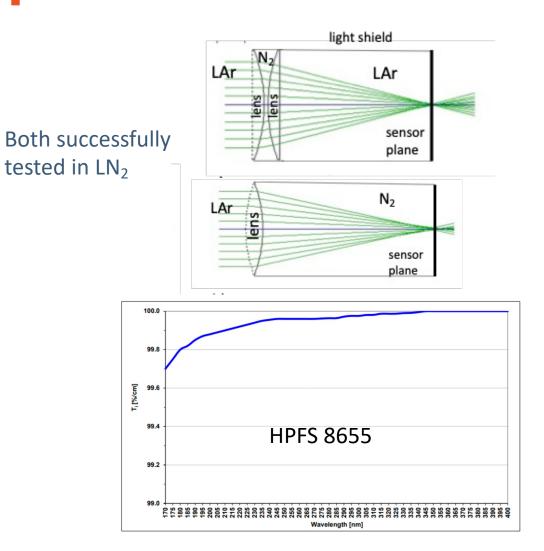
Electric control panel

The project has been completed with the help of LNL cryogenic division staff, and all the material has been delivered to LNL.

Analog Input: 52 Analog Output: 21 Digital Input: 14 Digital Output: 9

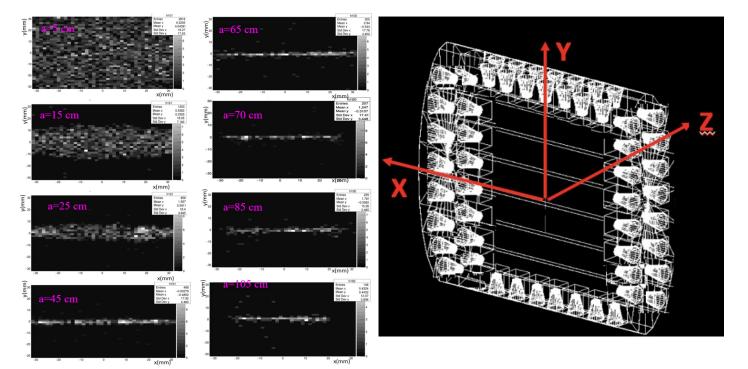
Plus some spares

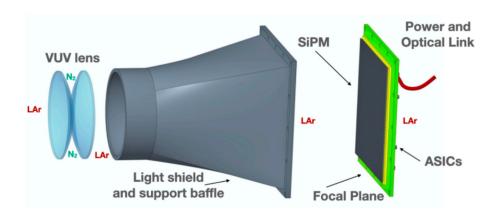
14


Optics and reconstruction with lenses

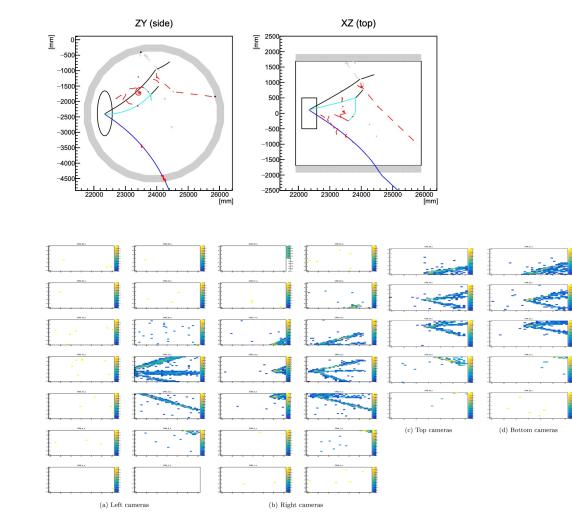
Alessio Caminata – Alice Campani for the Grain WG CSN1 Review of SAND July 11th, 2024

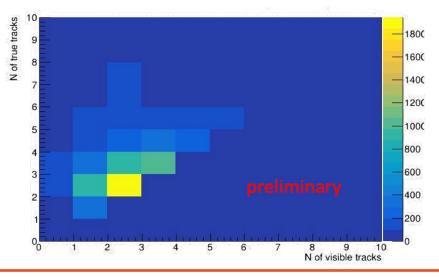
Materials and design


- Materials
 - Fused silica HPFS 8655 need of xenon doping of Argon
 - Alternative option: usage of MgF2 no need for xenon doping
- Design
 - Type A: Two plane-convex lenses \rightarrow gas between the two lenses
 - Type B: Single bi-convex lens \rightarrow gas between the lens and the sensor
- SiPMs:
 - Matrix with 32x32 SiPMs with different sizes:
 - (1mm, 2mm -> baseline, 3mm)



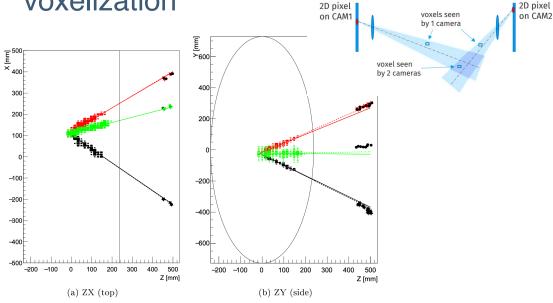
Example of the simulation results

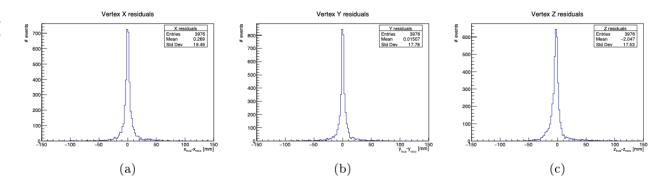

- Geant4-based simulation framework implemented
- Capability to simulate both single interactions and spills


1 GeV muon parallel to the lens central plane

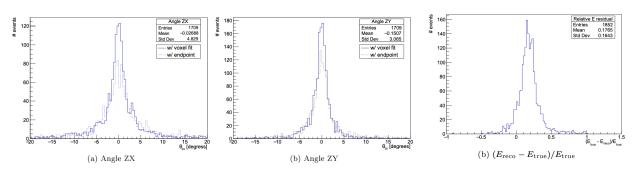
Grain performance reco and track containment

Reco True	Contained	Not contained
Not contained	$247~(\sim 3\%)$	8269 (~ 97%)
Contained	$3301~(\sim 74\%)$	1186 ($\sim 26\%)$


15k ν_{μ} CC sample and 5 cm FV cut from the cryostat walls GRAIN+STT info used here

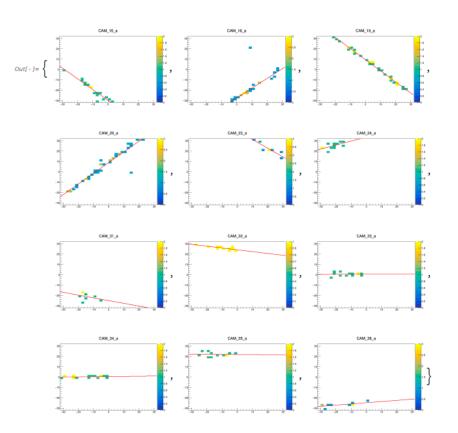


GRAIN performance -track reconstruction

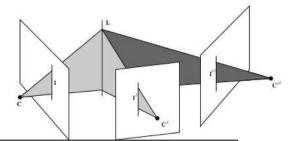

- Track reconstruction in 2 steps:
- 2D analysis of the camera images and fit of the tracks
- 3D matching of the different tracks based on projective geometry or voxelization

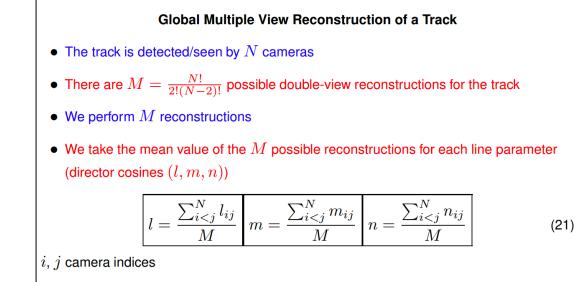
• Vertex detection performance

• Angular resolution, energy resolution



More details <u>here</u>



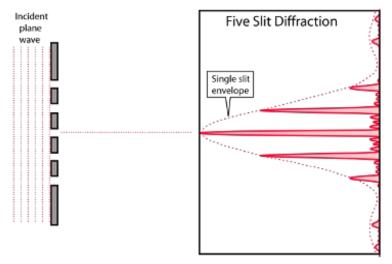

Projective geometry

• Algorithm for track reconstruction under development by Lecce group

- Single track: tested
- Test with 2 tracks from neutrino interaction: in progress

 $\bullet\,$ Analysis of intercepts of the M reconstructions

LArRI:

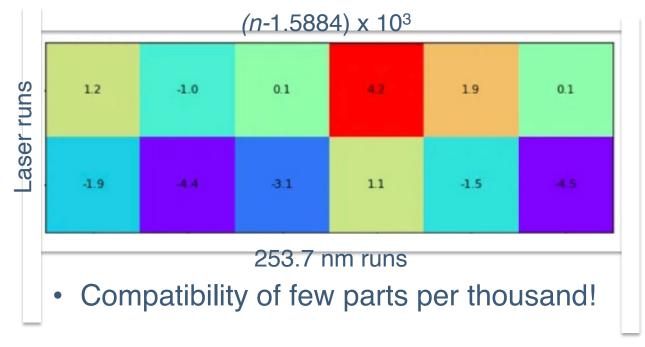

A new setup to measure Liquid Argon Refractive Index

- LAr: most widely used scintillator, excellent properties at low cost
- Xe-doping shifts s. peak to $\lambda_s = 175$ nm: increased uniformity, simplified detection
- Main goal: direct measurement of LAr
 <u>refractive index</u> crucial for imaging systems
- Further goals:

10

11-07-2024

- $_{\odot}~$ Characterize optical properties of LAr
 - Measure dispersion relation
 - Measure the attenuation length
- Extend to other liquified noble gases


- A diffraction grating is used and when immersed in liquid the diffraction peaks position depends on $\lambda_L = \lambda_0/n$
- We need a light source:
 - $_{\odot}~$ Peak @ λ_{s} , coherent and monochromatic

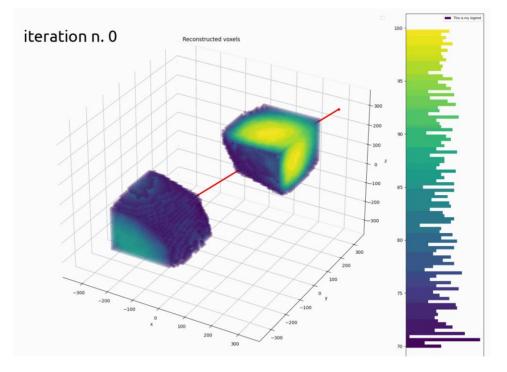
Key idea: compare the diffraction patterns produced by light in LAr and vacuum

LArRI: results and next steps

- Consistency check measurements:
 - Same medium (vacuum), 2 wavelengths
 - Scans @402.9 nm vs scans @253.7 nm
 - \circ Results shown as deviations x 10³

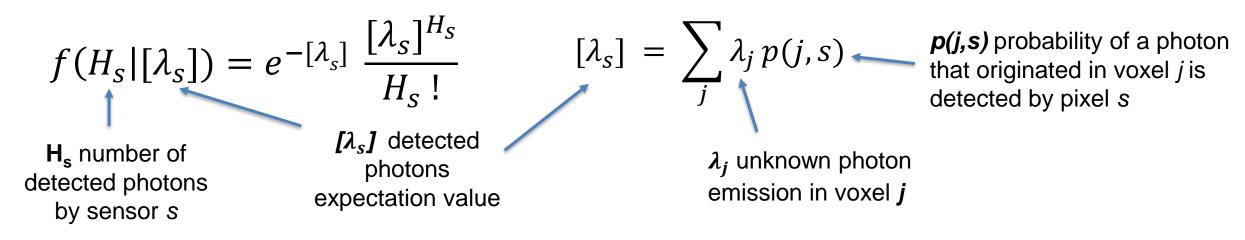
- Preliminary results in liquid argon:
 - \circ Refractive index @402.9 nm nLAr = 1.24(1)
 - Refractive index @253.7 nm nLAr = 1.24(1)
 - Refractive index @184.9 nm nLAr = 1.29(5)
- Conclusions:
 - System fully operational in vacuum and liquid
 - Analysis strategy validated
- Steps moving forward:
 - Evaluation of the systematics
 - Improve measurements @185 nm
 - $_{\odot}~$ Take runs in LAr to achieve the target

Optics and reconstruction with Coded Aperture masks


Valentina Cicero

CSN1 Review of SAND 11/07/2024

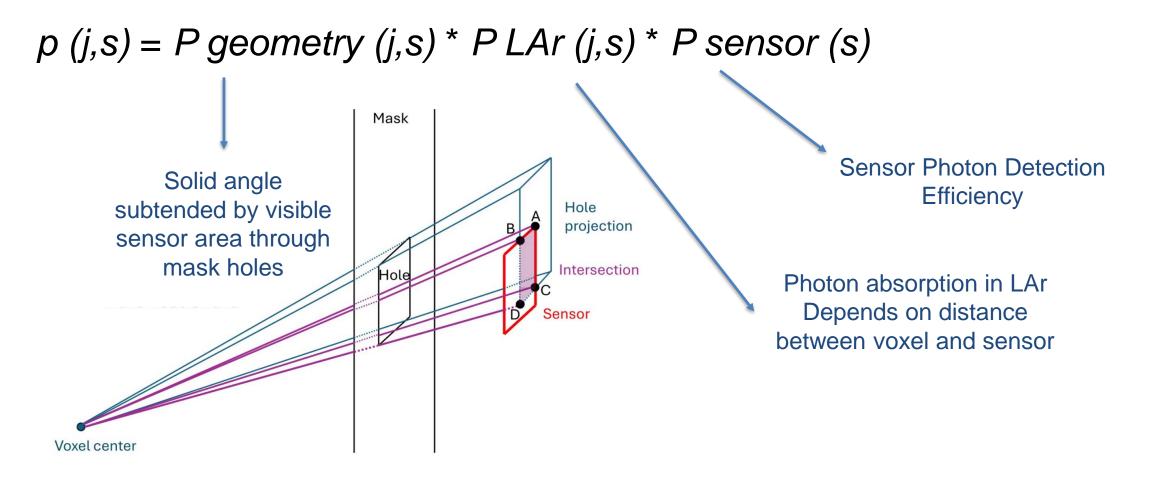
GRAIN Reconstruction algorithm


- Directly reconstructs in 3D dimensions the initial photon source distribution in a segmented volume (voxels)
- Combines information of multiple cameras at once
- Maximum Likelihood Expectation Maximization
 (MLEM) algorithm:
 - iteratively converges to the photon source distribution that maximizes the likelihood of detecting the observed images
- Implemented for execution on (multiple) GPUs

GRAIN Reconstruction algorithm

• Photon counting is described by a Poissonian pdf:

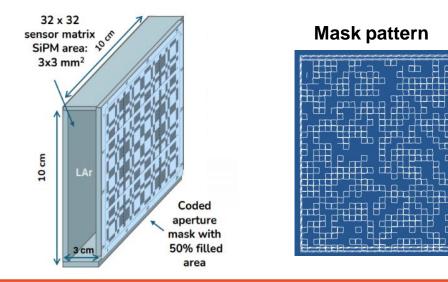
• Likelihood for all sensors:


$$\prod_{s} e^{-[\lambda_{s}]} \frac{[\lambda_{s}]^{H_{s}}}{H_{s}!} \quad \blacksquare$$

Reconstruction algorithm:

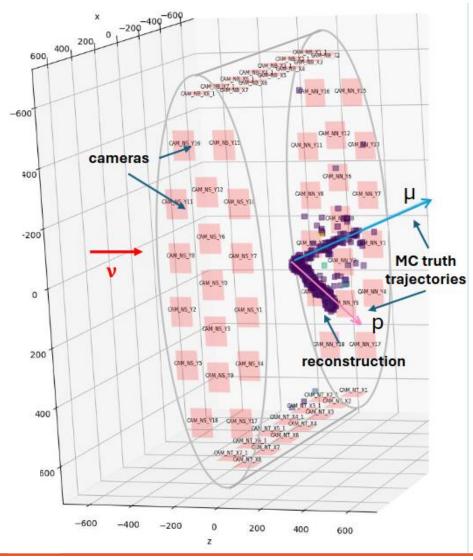
$$\lambda_{j}^{k+1} = \frac{\lambda_{j}^{k}}{\sum_{s} p(j,s)} \cdot \sum_{s} \frac{H_{s} \cdot p(j,s)}{\sum_{j} p(j,s) \cdot \lambda_{j}^{k}}$$
k iteration number

GRAIN reconstruction algorithm


The algorithm key element is the accurate computation of p(j,s)

GRAIN CA imaging system

- Sensor matrix:
 - 32 x 32 Silicon Photomultipliers (SiPM)
 - SiPM active area: 3x3 mm²
- Coded aperture mask:
 - Random uniform pattern of holes
 - Holes aligned to SiPMs, area: 3x3 mm² •
 - Distance from sensors: 3 cm •



Camera design was optimized with simulations in simplified geometry

- - 60 cameras in GRAIN
 - covering elliptic sides + bottom and top rows

Example of reconstructed neutrino event

v – Ar Charged Current Quasi-Elastic scattering

Reconstruction:

- 12 mm voxel size
- 200 algorithm iterations
- Shown voxels with estimated photon emission ~> 5% of max value

Muon reconstruction in GRAIN

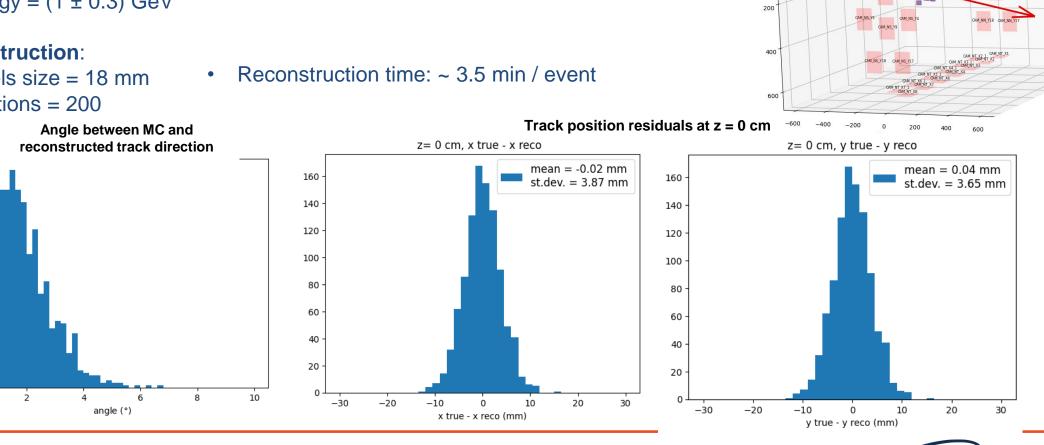
Simulated sample:

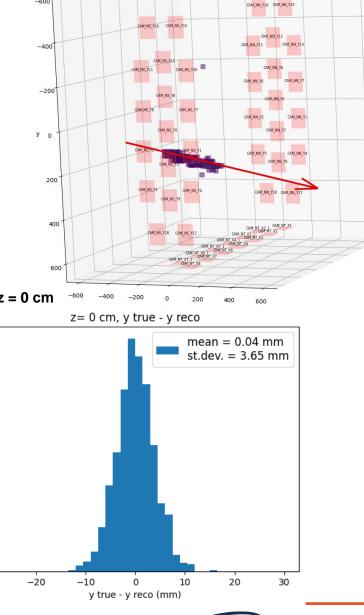
- 1k muons crossing GRAIN along z
- Origin position: ([-30, + 30], [-30, + 30], -50) cm ۲
- Direction: $\theta = [160, 180], \phi = [0, 360]$ ۲
- Energy = (1 ± 0.3) GeV

Reconstruction:

80

60

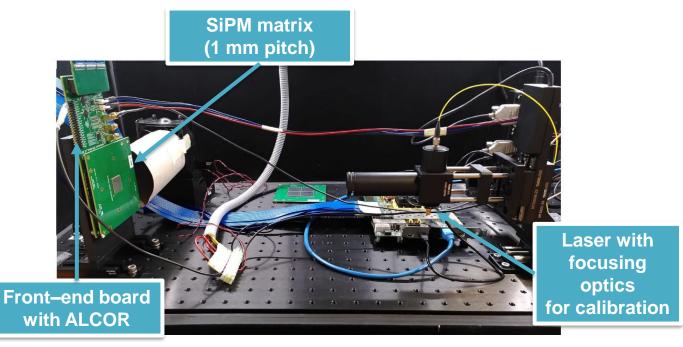

40

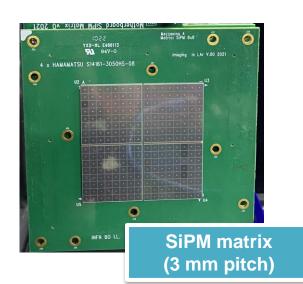

20

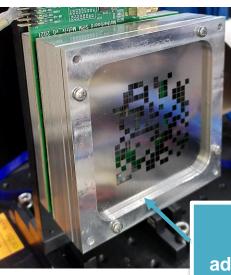
0 -

0

- Voxels size = 18 mm
- Iterations = 200•



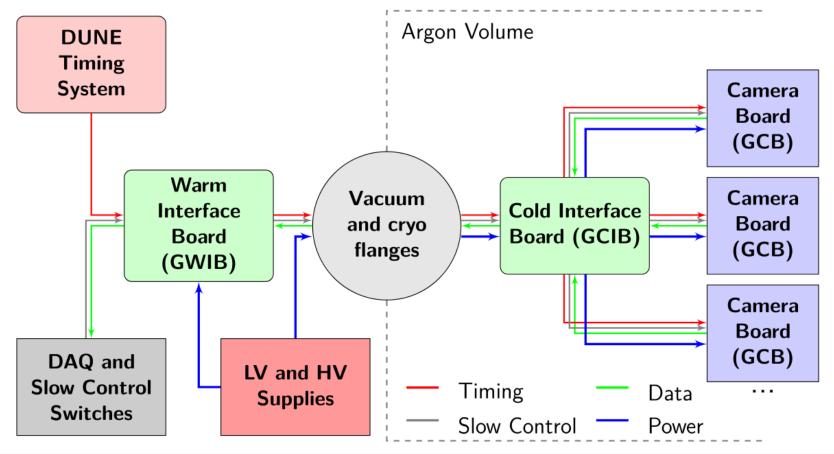

INFŃ


CAM NE XEN NEW YE NEW AND YEAR TO YEAR AND YEAR

Camera prototype

- Built 2 camera prototypes:
 - 16 x 16 SiPM matrix
 - SiPM area 3x3 mm²
 - Mask: stainless steel sheet 120 um thick, laser cut
- Front end electronics with 8 ALCOR ASIC
- DAQ with a Xilinx FPGA board
- to be tested in LAr at ARTIC facility at Genoa with cosmic rays

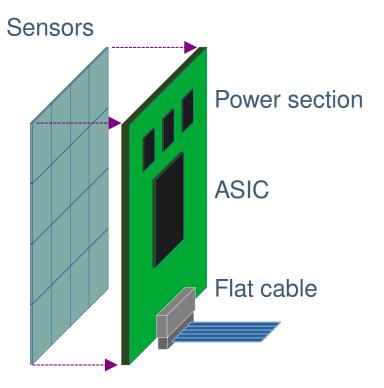
Mask with spacers to adjust distance



GRAIN readout overview and integration

Nicolò Tosi – INFN Bologna

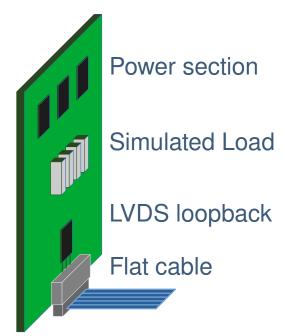
GRAIN Readout Scheme



GRAIN Camera Board

- On the front side:
 - VUV or WLS coated SiPM Matrices

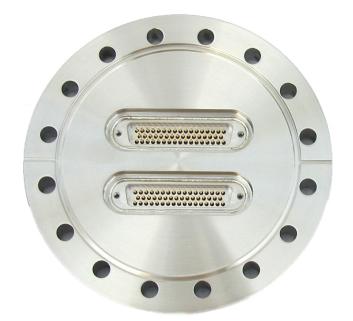
- On the rear side:
 - One ASIC
 - A few LDO regulators
 - Connection



GRAIN Mock Up Camera Board

A test board for thermal and electrical tests

- Validate commercial LDOs
- Validate full I/O solution
- Study bubble formation and mitigation
 - ASIC simulated with equivalent power Resistors

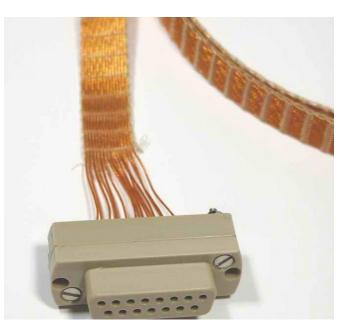


Cold Interface Board and Flanges

A study is now in progress on the optimization of I/O considering:

 Availability of commercial feedthrough flanges with high density connectors (Sub-D or similar) vs custom flanges

Example CF with 2x Sub-D 50 pin (Allectra GmbH)


Cold Interface Board and Flanges

A study is now in progress on the optimization of I/O considering:

 Choice of cables and connectors as a compromise of signal integrity (for at least clk and data lines at 300+ MHz) vs

cost

Example Sub-D with standard pins, Peek connector and polyimide cable

Example Sub-D with combined coax & pins polyimide cable

GRAIN Warm Interface Board

This board hosts an FPGA (and a CPU) to interface the ASIC with:

- The DUNE Timing System (dedicated fiber)
- DUNE-DAQ (10 GbE)
- DCS (1 GbE)

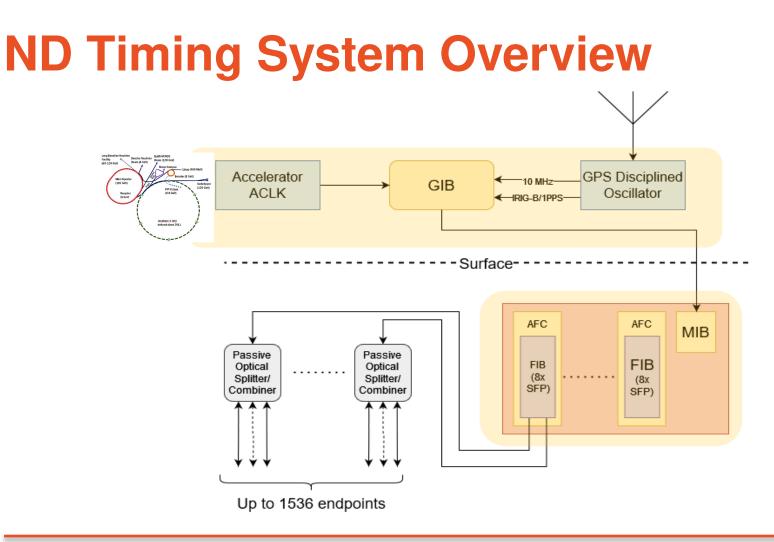
Each board (one per flange) will support up to 8 Camera Boards

Reduce PCB and FW development effort/risk and possibly exploit synergies with STT by using a commercial Zynq mezzanine with a custom base board

Timing system integration

- Bristol designed a reference Timing Endpoint
 - They provide an FMC mezzanine, FW and SW (uses lpbus)
 - Acts as master or endpoint depending on loaded firmware
- We can plug these in our current VC707 DAQ boards
- Test integration of hardware and firmware and learn how to use software tools

Outlook


Activities that have started or will start in 2024:

- ASIC development
- DUNE Timing System integration testing
- D-Sub connector tests with flanges

Plans for 2025:

- Design mock-up camera boards and cold interface board
- Begin design of Warm Interface Board

DALLAVALSAAS

The New ASIC for GRAIN

ASIC Specs, Architecture Validation and Project Timeline

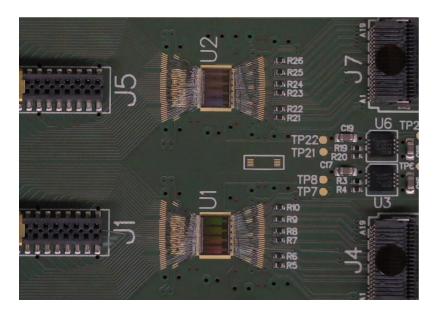
INFN-LNF – Project Review July 11th, 2024

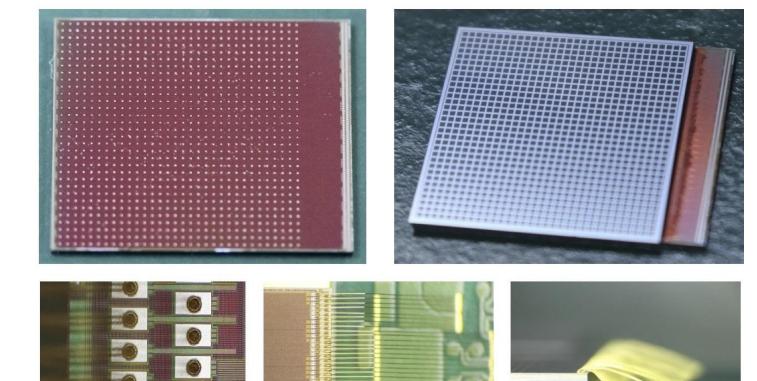
Stefano Durando

Sofia Blua, Valerio Pagliarino, Angelo Rivetti

Parameter	Value
SiPM Size	2 x 2 mm² (140 pF) 3 x 3 mm² (500 pF)
# Channels/ASIC	1024
Operating Temperatures	300 K – 77 K
<power consumption=""></power>	5 W / cm² ◊
Duty Cycle	On ≥ 9.6 µs (50 µs) Off ^{◊◊} < 0.1 s
Measurements:	Q – ToA - ToT
Integrator Dynamic Range	> 100 PE
RMS _{ToA} (first PE)	100 ÷ 150 ps /1PE
RMS _{ToT}	≈ ns
Threshold	0.5 x 1PE
SNR	30

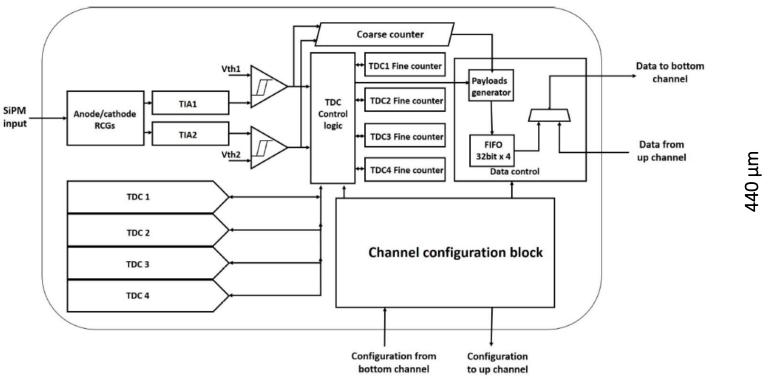
 $^{\diamond}$ Set by the cryogenic condition, still under study. $^{\diamond\diamond}$ Interspill = 1.2 ms - 9.6 µs

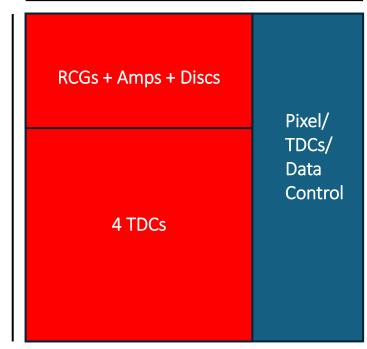

Stefano Durando - 11/07/2024 - INFN-LNF


ALCOR Parent

- **Parent ASIC:** R&D with an external company
 - UMC 110 nm
 - 1024 Channels, reading out silicon pixels
 - The ASIC is bump-bonded to the pixels
 - Key IP blocks like the TAC based TDC (30 ps)
 - Basis for the following prototypes

• ALCOR v1

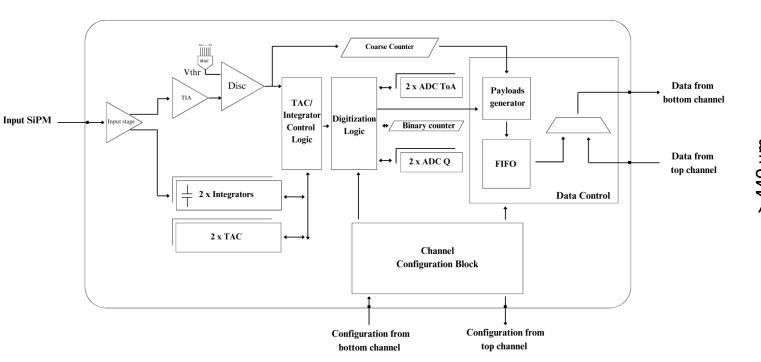

A Low power Chip for Optical sensors Readout


2 ALCOR chips wire bonded on the dedicated board Courtesy of Fabio Cossio (INFN) ALCOR's Parent: 1024 pixel channels were bumpbonded to the silicon pixels. The ASIC was wirebonded on the board

ALCOR Pixel Scheme

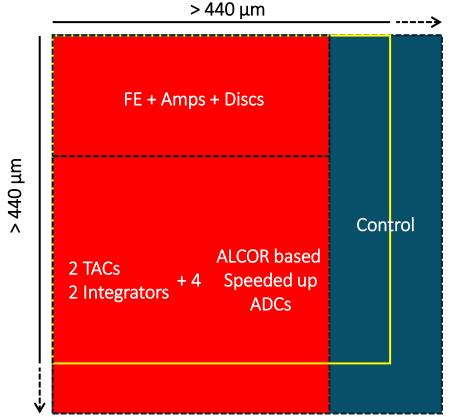
• 2 (Anode/Cathode) Regulated Common Gates (RCGs) Input stage

- 2 Independent Trans-Impedance Amplifiers (TIAs)
- 2 Leading Edge Discriminators (LE Discs)
- 4 TDCs = 4 x (TAC + Wilkinson ADC)
- Control Logic: pixel config, TDCs operation and data transmission



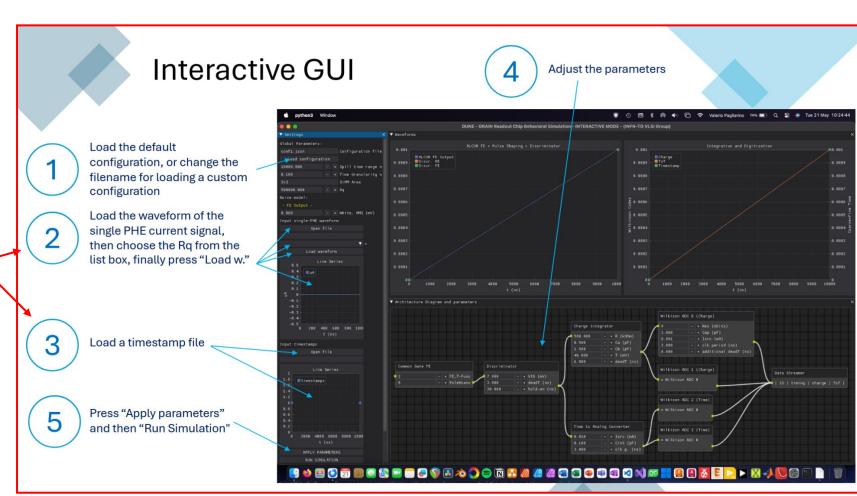
440 µm

ALCOR v1 pixel


Dominated by the analog blocks (capacitors)

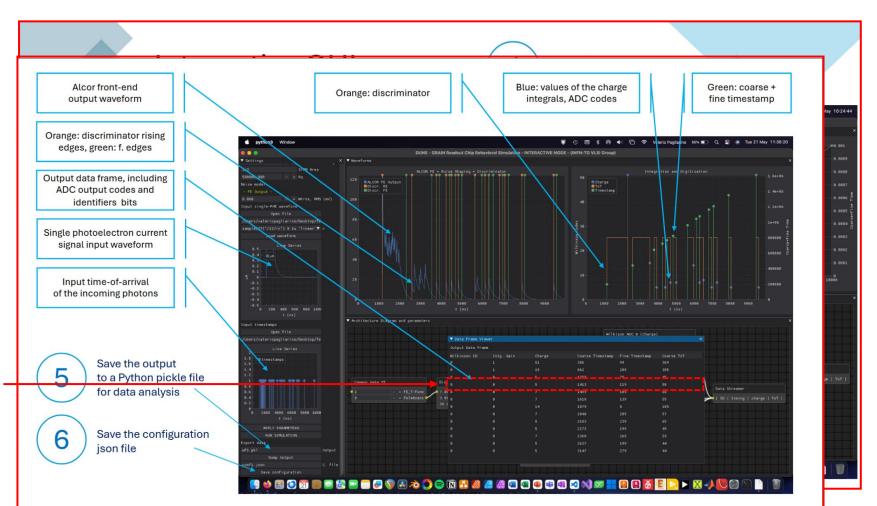
GRAIN ASIC Pixel Scheme

Based on the ALCOR scheme, with minimum changes:


- Regulated Common Gate input stage
- Time branch:
 - TIA + LE Discriminators
 - 2 Time to Analog Converters (TACs)
- Charge branch
 - 2 Integrators
- 4 Analog to Digital Converters with speed increased up to 4/8 times
- Control: pixel config, ADCs/Integrators/TACs operation and data transmission

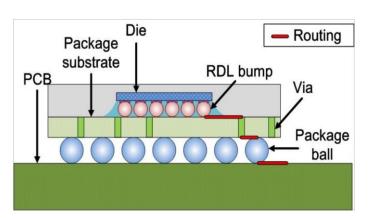
GRAIN ASIC pixel

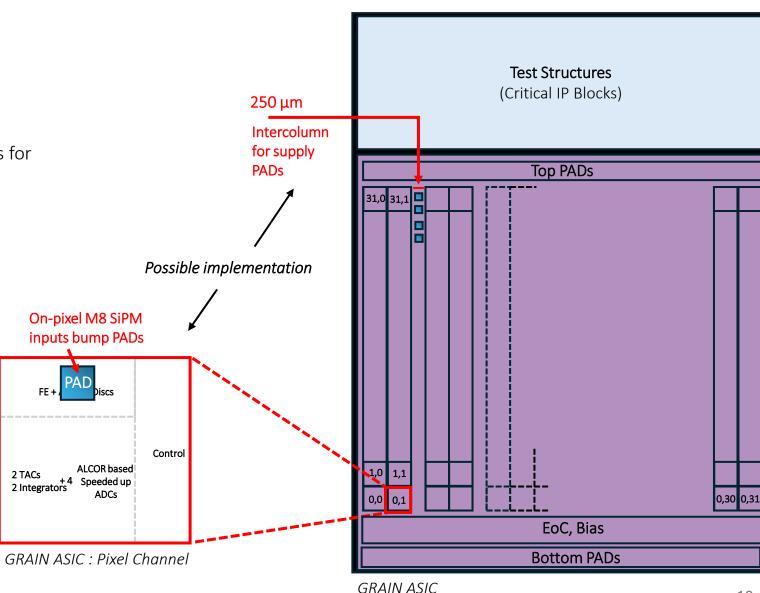
Architecture Validation


- Ongoing validation of the architecture by the collaboration for GRAIN detector's physics with:
 - Coded aperture masks
 - Lenses
- **Python software** designed in Torino by <u>Sofia Blua</u> and <u>Valerio Pagliarino</u>
 - Inputs: time domain reconstruction of a single spill SiPM event
 - Behavioural model: Ideal description of the pixel electronics' response
 - Output: numpy array (ASIC-like output)
- First results suggest the proposed architecture meets the requirements

Courtesy of Sofia Blua and Valerio Pagliarino

Architecture Validation


- Ongoing validation of the architecture by the collaboration for GRAIN detector's physics with:
 - Coded aperture masks
 - Lenses
- **Python software** designed in Torino by <u>Sofia Blua</u> and <u>Valerio Pagliarino</u>
 - Inputs: time domain reconstruction of a single spill SiPM event
 - Behavioural model: Ideal description of the pixel electronics' response
 - Output: numpy array (ASIC-like output)
- First results suggest the proposed architecture meets the requirements


Courtesy of Sofia Blua and Valerio Pagliarino

Flip-Chip BGA package

- The ASIC is bump-bonded to an interposer connected to the board with package balls
 - On-pixel PAD for SiPM
 - Inter-column supply and ground PADs for reduced IR drops
- Similar approach is followed for ALCOR v3 implementation for EIC

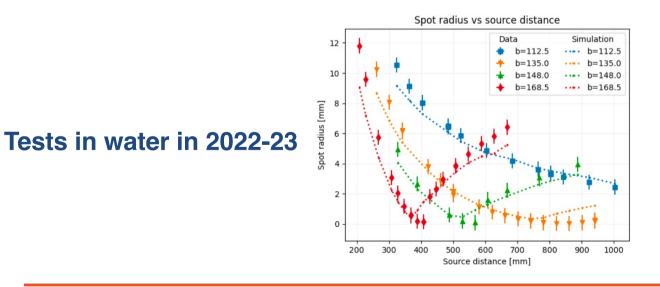
Flip-chip BGA working principle Hsu, Hsin-Wu & Chen, Meng-Ling & Chen, Hung-Ming & Li, Hung-Chun & Chen, Shi-Hao. (2012). On effective flip-chip routing via pseudo single redistribution layer. 1597-1602.

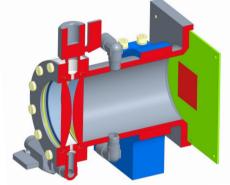
10.1109/DATE.2012.6176727.

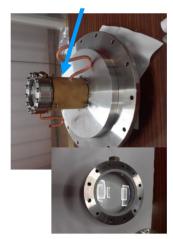
10 Stefano Durando - 11/07/2024 – INFN-LNF

Tests in ARTIC

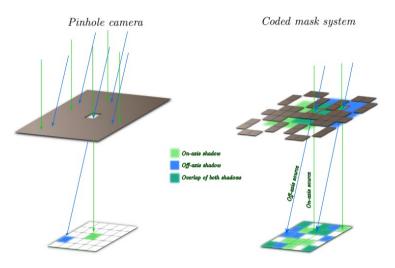
Lea Di Noto University of Genova and INFN Sez.Genova


DUNE CSN1 Review July, 11th 2024


The lens prototypes


Material: Corning® HPFS 8655 glass

- Focal lenght: 89 mm
- 2 built prototypes:
 - **smaller diameter 50 mm** with optimized curvature thickness: 12 mm
 - bigger diameter 60 mm optimized for higher distance (up to 1.2 m) thickness: 20 mm



The coded mask prototype

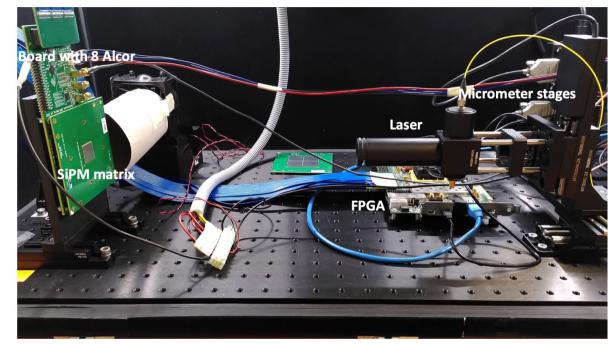
Coded aperture mask techniques were developed as the evolution of a single pinhole camera

 matrix of multiple pinholes to improve light collection and reduce exposure time

Image formed on sensor is the superimposition of multiple pinhole images

Advantages:

- Good light transmission (50%)
- Good depth of field
- Small required volume

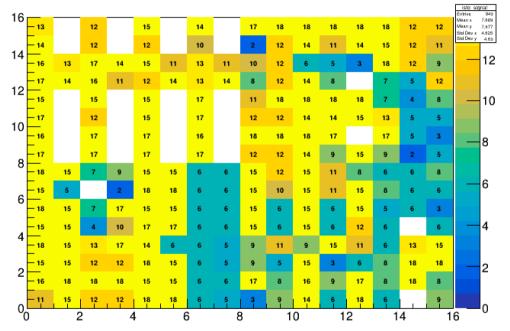


First readout

Sensors:

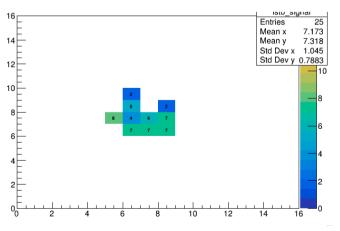
Matrix with 16x16 SiPM with different sizes:

- 1 mm available
- 3 mm available
- 2 mm in progress → the baseline for lens


- The SiPM matrix is acquired by 8 Alcor chips:
 - For each channel, we can record:
 - Time of the over-threshold (TDC time)
 - TOT (Time over threshold)

First tests with SiPM matrix

Pulsed light signal on all channels


18 counts are expected for each channels

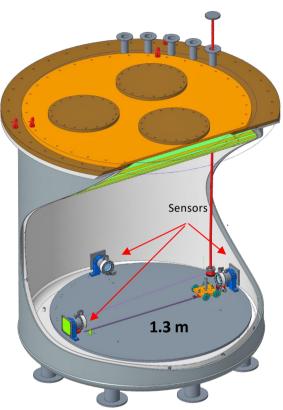
1001 V 1051 W 107 mV 107 m

For each channel the number of signals with ToT > 200 ns and with the same period of the pulsed light is counted

Pulsed light signal on few channels

- Few channels are broken (due to an ALCOR chip)
- Not same efficiency (the threshold have to be optimized
- Not good reproducibility (to be improved)

ARTIC - Argon Test InfrastruCture



Installed since 2020

 \rightarrow 0.7 l/h if the N2 level is at 10 cm

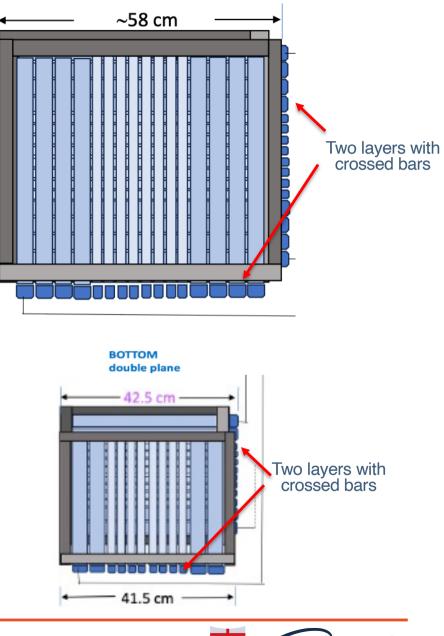
Tests for sensor optimization

- Cosmic ray detection in LAr (+Xe) triggered by an external cosmic ray system
- In ARTIC we have to install a LAr recirculation (+ Xe doping system) for collecting scintillation light (by end 2024)
- An external CRT will be mounted on the top and on the bottom
- We plan to use 2 3 cameras for reconstructing the muon tracks

These tests:

- will validate the possibility to use the new detectors in GRAIN
- will allow us to design and test the final detectors and electronics
- will provide additional measurement of LAr properties

CRT for ARTIC


CRT GOALS:

- Trigger for the LAr acquisition (fourfold coincidence)
- Two-view tracking to help the LAr event reconstruction

Trigger condition: Fourfold coincidence

TOP double plane

CRT for ARTIC is completed

The CRT is in the commissioning phase at LECCE

TOP tray

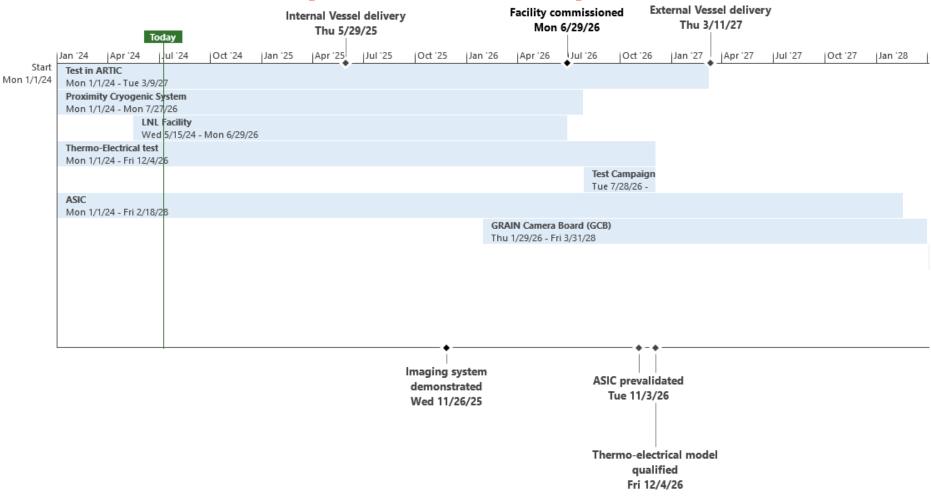
BOTTOM tray

It will installed at GENOVA soon

GRAIN: Project plan

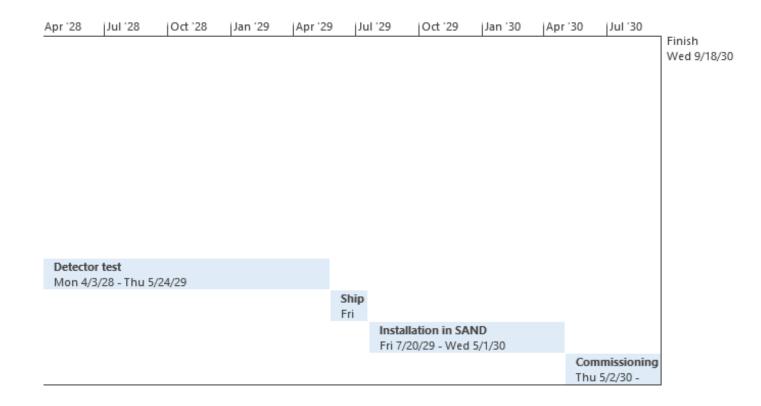
Alessandro Montanari

CSN1 review Frascati, 11 Luglio 2024



Test roadmap

- Test campaign through all the Project evolution:
 - Imaging technology:
 - Cameras with Masks or Lenses in ARTIC (LAr)
 - Thermo-electrical qualification:
 - At room temperature in Lab
 - At LAr temperature in LNL (when Internal vessel and cryogeny ready)
 - Full detector test:
 - Final configuration of all cameras with Cosmic rays in LNL

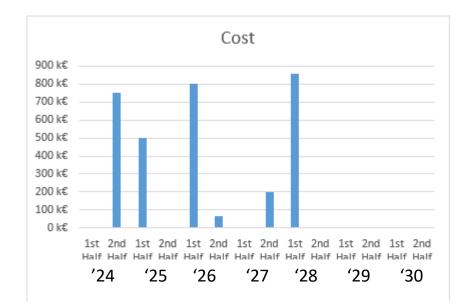


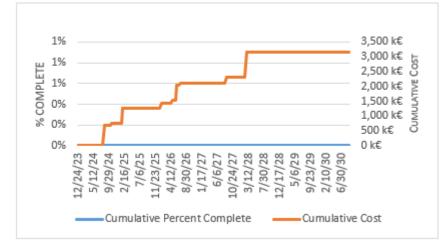
Timeline (2024-2027)

Timeline (2028-2030)

Timeline (overall view)

		Task				2024		2025		2026		2027		2028		2029		2030	2
	U	Mode 🔻	🗸 Task Name 🗸 👻	Duration 👻	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2
0		→	⊿ GRAIN	321.6 wks															
1		□ →	Internal Vessel	69 wks															
9		□ →	Vacuum Tank	58 wks				٦											ļ
18		□ →	External Vessel	130.6 wks		F													
25		□ →	Proximity Cryogenic System	124.6 wks							٦								Į
45		□ →	LNL Facility	101.2 wks							1								/
64		□ →	▷ Test in ARTIC	152 wks															ļ
73		□ →	Thermo-Electrical test	140.6 wks								1							
86		□ →	GRAIN Cold Interface Board (GCIB)	105.6 wks															
91		□ →	▷ ASIC	196.6 wks															
106		□ →	GRAIN Camera Board (GCB)	103.6 wks						—									
119		- →	GRAIN Warm Interface Board (GWIB)	127.6 wks										Г					
129		→	Detector test	55 wks															
136		□ →	Installation and commissioning	64 wks												Г			
119 129			 GRAIN Warm Interface Board (GWIB) Detector test 	127.6 wks 55 wks										 				·····	




Critical Path

	 Task Mode 	- Task Name	- Duration -	- Work -	Start 🗸 Finish 🖌 Predecessors	Haif 1, 2024 Haif 2, 2024 Haif 1, 2025 Haif 2, 2025 Haif 1, 2026 Haif 2, 2026 Haif 1, 2027 Haif 2, 2027 Haif 1, 2028 rs J M M J S N J M M J S N J M M J S N J M M J S N J M M J S N J M M
0		⊿ GRAIN	321.6 wks	0 wks	Mon 1/ Wed 9/1	
1		Internal Vessel	69 wks	0 wks	Mon 1/1 Thu 5/29/	
9	-	Vacuum Tank	58 wks	0 wks	Mon 1/1 Thu 3/13/	
18	-	External Vessel	130.6 wks	0 wks	Fri 5/31/ Thu 3/11/	
25	□	Proximity Cryogenic System	124.6 wks	0 wks	Mon 1/1 Mon 7/27	
45	□	LNL Facility	101.2 wks	0 wks	Wed 5/1 Mon 6/29	
64	-	Test in ARTIC	152 wks	0 wks	Mon 1/1 Tue 3/9/2	
73	-	Thermo-Electrical test	140.6 wks	0 wks	Mon 1/1 Fri 12/4/2	
86	-	GRAIN Cold Interface Board	105.6 wks	0 wks	Fri Fri	
		(GCIB)			1/24/25 4/9/27	
91		▲ ASIC			Mon 1/1 Fri 2/18/2	
92		specs definition	30 wks		Mon 1/1, Fri 7/26/2	
93		Channel design	10 wks		Mon 7/2 Thu 10/24 92	
94		Readout and integration de			Fri 10/25 Thu 4/24/ 93	
95		Layout design	9 wks		Fri 4/25/ Thu 6/26/ 94	
96	⇒	ASIC interface document rea			Thu 6/26 Thu 6/26/ 95	6/26
97		Final verification	26 wks		Fri 6/27/ Wed 1/28 96	
98		Chip Production	13 wks		Thu 1/29 Wed 4/29 97	ASIC engineering run 1[200 k€]
99		Packaging	13 wks		Thu 4/30 Wed 7/29 98	ASIC packaging[100 k€]
100		Test and validation	30 wks		Wed 9/9 Tue 4/20/ 113,88,124	
101		ASIC prevalidated	0 wks		Tue 11/3 Tue 11/3/ 100SS+8 wks	ks
102		Final design	34 wks		Mon 12/ Fri 9/3/27 101,85	
103	□	Final chip production	10 wks	0 wks	Mon 9/6 Fri 11/12/ 102	ASIC engineering run 2[2
104	□	Packaging	12 wks			
105	□	ASIC completed	0 wks		Fri 2/18/ Fri 2/18/2 104	₹ 2/18
106	□	GRAIN Camera Board (GCB)	103.6 wks	0 wks	Thu 1/29 Fri 3/31/2	
119	-	 GRAIN Warm Interface Board (GWIB) 	127.6 wks		Fri Fri 4/18/25 1/7/28	
129		Detector test	55 wks	0 wks	Mon 4/3 Thu 5/24/	
136	-	Installation and commissioning	g 64 wks	0 wks	Fri 5/25/ Wed 9/18	

Expenditure profile (preliminary)

Name	Remaining Cost
Internal Vessel	180 k€
Vacuum Tank	70 k€
External Vessel	500 k€
Proximity Cryogenic System	1,000 k€
LNL Facility	
Test in ARTIC	
Thermo-Electrical test	
GRAIN Cold Interface Board (GCIB)	
ASIC	500 k€
GRAIN Camera Board (GCB)	920 k€
GRAIN Warm Interface Board (GWIB)	
Detector test	

MON 1/1/24 - WED 9/18/30

∞ज 3,170 k€

