The Instrumentation Division at BNL has been testing SiPMs from various vendors in the past years; primary targeted to operate SiPMs in cryogenic temperature and in noble liquids.

- Packaging and bond bare SiPM chips to various carriers
- Current-voltage (IV) characterization: at room temperature, $165K$, $85K$ in vacuum, LN_2 , and in purified LAr, LXe, and LKr
- Charge gain, μ cell and terminal capacitance, quench resistance, $V_{\text{breakdown}}$, I_{dark}
- time correlated and time uncorrelated avalanche noise measurements: optical cross-talk (CT), after-pulse (AP), and thermally activated dark count (DCR), respectively.
- photodetection efficiency (PDE) from VUV to NIR wavelength range and photon number resolving (PNR) capability.

DUNE S13360-6075-HS-HRQ high R_q , normal V_{bd}

DUNE FBK triple-trench 50µm $\log V_{bd}$

lower V-breakdown → higher capacitance → higher power to drive readout electronics

DUNE S13360-6075-HS-HRQ high R_q , normal V_{bd}

large OV span

K

 $LN₂$ IV dark and light

 $~1$ 41 V

RT IV DARK

 V_{bd} ~ 50.6 V

 $1e-03$

 $1e-04$

 $\frac{1}{2}$ le-05

 $1e-07$

 $1e-08$

 $1e-09$

 $1e-03$

 $1e-04$

 $1e-05$

 $1e-06$

 $1e-07$

 $1e-08$

 $1e-09$

 $1e-1$

 $1e-11$

 $1e-12$

 $1e-13$

current (A)

 $\mathbf{0}$

large OV span

mandang

\$13,60-6075-HS-HRQ - six devices

10

S13360-6075-HS-HRQ - six devices

15

valom

15

10

over-voltage (Volt)

$1e-02$ RT IV dark $1e-03$ $1e-04$ $\frac{1}{2}$ 1e-05 $~10.5 \text{ V}$ $1e-07$ $1e-08$ FBK triple trench - six devices $1e-09$ Ω $\overline{}$ 10 over-voltage (Volt) $1e-03$ LN₂ IV dark and light $1e-04$ $1e-05$ $1e-06$ $V_{tot} \sim 26.8 \text{ V}$ 5333 $1e-07$ $\text{current}\left(\mathbf{A}\right)$ والمستقطع والمتواطئ بعصيتين $1e-08$ $1e-09$ $1e-10$ $1e-11$ **AMARAMAYAY** Saaka $1e-12$ FBK triple trench - six devices $1e-13$ $\tilde{\mathbf{x}}$ 10 Ω over-voltage (Volt) FBK direct SiPM pulse shape: ch3 $\begin{array}{ll} \mbox{amplitude (mV)}\\ \mbox{${\scriptstyle \odot}$}\\ \mbox{${\scriptstyle \Xi}$} \end{array}$ R_q ~33 $/2$ VWW charge signal RT LN₂ 0.00

 $time (µs)$

15

15

Broadcom

IV Room Temp.

IV $LN₂$

direct pulse shape

PDE, correlated noise, etc…

PDE is calculated by fitting a Poisson distribution to the photoelectron spectrum

n = Poisson fitted mean number of photoelectrons

relative PDE in LN₂ (Broadcom, DUNE FBK, DUNE HPK)

Number of incidence photons is determined from the measured photocurrent at the selected wavelength from a NIST calibrated photodiode

$$
\# \ of \ 405 \ nm \ photons = \frac{0.65 \ fA}{(1 \ kHz)(0.19 \frac{A}{W})(1.6 \times 10^{-19} J/eV) (3.06 \ eV)} (0.86) = \frac{6.01 \ photons}{10000 \ m/s} \text{pulse}
$$

PDE in LN₂ (Broadcom, DUNE FBK, DUNE HPK)

PDE (Broadcom, 405 nm, 5V, LN₂) $=$ $\frac{\# \textit{photoelectrons out}}{\# \textit{photons in}} = \frac{3.8}{6.01}$ 6.01 $= 0.63$

DUNE HPK: PDE spectral response – use white light source and calibrate against NIST photodiode

$$
PDE_{\lambda} = [spectral \text{ reproduse}]_{\lambda} \times \frac{[PDE_{pulse}]_{405nm}}{[spectral \text{reponse}]_{405nm}}
$$

noted: CT & AP – photoelectron effect, wavelength independent

PDE (QE) = photon effect, depends on wavelength

Spectral PDE response generally agrees with HPK (peak at ~460 nm) – also has a slight blue shift behavior in LN₂

DUNE FBK: PDE spectral response – use white light source and calibrate against NIST photodiode

$$
PDE_{\lambda} = [spectral \text{ reproduse}]_{\lambda} \times \frac{[PDE_{pulse}]_{405nm}}{[spectral \text{reponse}]_{405nm}}
$$

noted: CT & AP – photoelectron effect, wavelength independent

PDE (QE) = photon effect, depends on wavelength

N/C

Can't compare to FBK data (peak at \sim 400 nm) – may have a very slight blue shift behavior in LN₂

Broadcom: PDE spectral response – use white light source and calibrate against NIST photodiode

$$
PDE_{\lambda} = [spectral \text{ reproduse}]_{\lambda} \times \frac{[PDE_{pulse}]_{405nm}}{[spectral \text{reponse}]_{405nm}}
$$

noted: CT & AP – photoelectron effect, wavelength independent

PDE (QE) = photon effect, depends on wavelength

SiPM array readout concept

DUNE FD-2: ARAPUCA (Argon R&D Advanced Program at UniCAmp).

Optical area

 \cdot 600 mm x 600 mm=3600 cm^2

SiPM area

 \cdot 160 x 0.36 cm^2 \approx 60 cm^{λ}2

 \cdot \approx 1.7 % of opt. area

SiPM array capacitance \approx 200 nF for $V_{\rm bd}$ ~45 V; \approx 260 nF for

M.C. Queiroga Bazetto, V.L. Pimentel, A.A. Machado and E. Segreto, in Campinas, Brazil

nEXO SiPM Light Detector Readout

SNR>10 for single photo electrons & radio-pure components are essential for nEXO.

2021 IEEE NSS/MIC

Demonstration of readout concept: weak coupling to amplifier, $C_b \ll C_d$

LArASIC P2:

16 **independent** ASIC input channels

peaking time: **1 µs** (programmable 0.5, 1, 2, 3 µs)
ASIC gain: **4.7 mV/fC** (programmable 7.8, 14, 25 mV/fC)

$$
C_{cal} = 185 \text{ fF}
$$

ADC *sampling rate: 2 MS/s* (0.5 us/time tick)

ADC *sampling rate:* 2 MS/s (0.5 µs/time tick) 10 MHz ref. clock lock

Reference: channel 0 Minitile 8P2S: channel 1 Minitile 8P2S: channel 13 *only 2 ASIC channels are used.*

LArASIC readout by ADC and FPGA shown in the photo Data streaming mode, 45sec/data Data collection: LabView Data analysis: Python 2021 IEEE NSS/MIC

 $time (ns)$

UV

fiber

To know the number of detected photons, the charge of the signal must be measured. two most common approaches: 0.0003

Charge integration

*direct SiPM pulse shape*0.0002 $\sum_{\substack{m=1 \ n \text{sgn} \ (0.0001)}}$ 165K 80K 0.0000 2000 3000 1000 4000 $time (ns)$

• Amplitude measurement

Both methods have their advantages and disadvantages. or a combination of both

Charge Readout concept: weak coupling to amplifier

2021 IEEE/MIC

SiPM parameters

SiPM parameters

HPK SiPM Minitile arrays S13775-9121 [4x4x(0.6 cm)2]

HPK minitile board SG/WjA 06/29/2020 D16 D12 D8 D4 4 cm D15 D11 D7 D3 D14 D10 D6 D2 $D13$ D9 D5 D1 \bigcirc

6.8 cm

active area=5.76 cm2 $N_{cell} = 16x13923 = 222768$ pixels $C_{\text{pcell}}(RT)$ =86 fF $C_{\text{Terminal}} (RT) = 1.2 \text{ nF } (3.3 \text{ nF/cm}^2)$ $C_{total}(16P)$ SiPM tile ~ 20 nF $C_{total}(8P2S)$ *SiPM tile = 4.8 nF*

in LN_2 ω 4.2 V OV 8P2S 4.8 nF: subset of raw signal trace (1 second)

S/N = 189.6/2.32 ≈ 82

2021 IEEE NSS/MIC

in LN₂: single-photoelectron charge histogram

Avalanche gain, S/N, resolution (8P2S, 4.8 nF), in LN₂

2021 IEEE NSS/MIC

Single-Photoelectron Timing and Coincidence Resolution

sinc-interpolation + peak finding led to \sim 10 ns timing resolution

time coincidence detection: minitiles #27 & #28 – 10 MHz lock ON

time coincidence detection: minitiles #27 & #28 – 10 MHz lock ON

after-pulse longer than µs: release of trapped charges after a characteristic time that depends on the type of the trapping centers and its occurrence probability increase in cryogenic temperature.

Mass testing of SiPMs

Mass production test of Hamamatsu MPPC for T2K neutrino

T. Murakami b, T. Nakadaira b, M. Tanaka b

^a Department of Physics, Kyoto University, Kyoto 606-8502, Japan ^b IPNS, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

INFN - Milano

A. Falcone^{a,*}, A. Andreani^c, S. Bertolucci^b, C. Brizzolari^a, N. Buckanam^d, M. Capasso^f, C. Cattadori^a, P. Carniti^a, M. Citterio^c, K. Francis^e, N. Gallice^c, A. Gola^f, C. Gotti^a, I. Lax^b, P. Litrico ^g, A. Mazzi ^f, M. Mellinato ^a, A. Montanari ^b, L. Patrizii ^b, L. Pasqualini ^b, G. Pessina ^a, M. Pozzato^b, S. Riboldi^c, P. Sala^c, G. Sirri^b, M. Tenti^{a,b}, F. Terranova^a, M. Torti^a, R. Travaglini ^b, D. Warner ^d, R. Wilson ^d, V. Zutshi ^e

^a INFN Milano Bicocca and University of Milano Bicocca, Department of Physics, Milano, Italy ^b INFN Bologna and University of Bologna, Department of Physics, Bologna, Italy ^c INFN Milano and University of Milano, Department of Physics, Milano, Italy ^d Colorado State University, Fort Collins, CO, USA ^e Northern Illinois University, Department of Physics, DeKalb, IL, USA Fondazione Bruno Kessler, Trento, Italy 8 INFN, Laboratori Nazionali del Sud (LNS), Catania, Italy

NIM A610 (2009) $TX - Japan$ For quality assurance of the $T2K$ neutrino detectors \sim 60,000 SiPMs (HPK) were tested:

M. Yokoyama^{a.*}, T. Nakaya^a, S. Gomi^a, A. Minamino^a, N. Nagai^a, K. Nitta^a, D. Orme^a, M. Otani^a, M. Otani^a, g. Otani^a, a. Otani^a, a. Nitta^a, D. Orme^a, M. Otani^a, M. Otani^a, g. breakdown voltage detection efficiency (PDE), and cross-talk (CT) and afterpulse(AP) rate are measured as functions of the bias voltage (V_b) and temp. (T)

NIM A985 (2021) **INFN** - Milano
For quality assurance of the <u>DUNE photon detection system</u>
 $\frac{1}{200}$ For quality assurance of the <u>DUNE photon detection system</u> 100-1000 SiPMs (FBK & HPK) were tested: cryo-reliability: electric and mechanical stability vs. thermal cycle,

I–V curve, Dark Count Rate (DCR) and correlated noise CN(OV). Single photoelectron sensitivity as a function of the total number of sensors connected.

BNL ?

For quality assurance of the FD3-4 photon detection system test of $x \#$ SiPMs (FBK & HPK) are being discussed: I-V, G, V_{bd} , DCR, CN: CT, AP (OV), relative PDE ...

