The Instrumentation Division at BNL has been testing SiPMs from various vendors in the past years; primary targeted to operate SiPMs in cryogenic temperature and in noble liquids.

- Packaging and bond bare SiPM chips to various carriers
- Current-voltage (IV) characterization: at room temperature, 165K, 85K in vacuum, LN₂, and in purified LAr, LXe, and LKr
- Charge gain, μcell and terminal capacitance, quench resistance, V_{breakdown}, I_{dark}
- time correlated and time uncorrelated avalanche noise measurements: optical cross-talk (CT), after-pulse (AP), and thermally activated dark count (DCR), respectively.
- photodetection efficiency (PDE) from VUV to NIR wavelength range and photon number resolving (PNR) capability.

DUNE S13360-6075-HS-HRQ high R_q, normal V_{bd}

S13360-6075-HS-HRQ			
area	6x6 mm ²		
pixel size	75 μm		
# of pixels	6364		
V_bd (RT, LN2)	51 V, 41 V		
Capacitance	1.9 nF		

DUNE FBK triple-trench 50 μ m low V_{bd}

FBK tiple-trench	
area	6x6 mm ²
pixel size	50 µm
# of pixels	11188
V_bd (RT, LN2)	31 V, 27 V
Capacitance	2.6 nF

Broadcom			
area	6x6 mm ²		
pixel size	40 µm		
# of pixels	22428		
V_bd (RT, LN2)	32.3 V, 27 V		
Capacitance	2.9 nF		

lower V*-breakdown* \rightarrow *higher capacitance* \rightarrow *higher power to drive readout electronics*

Broadcom

PDE, correlated noise, etc...

PDE is calculated by fitting a Poisson distribution to the photoelectron spectrum

n = Poisson fitted mean number of photoelectrons

relative PDE in LN₂ (Broadcom, DUNE FBK, DUNE HPK)

Number of incidence photons is determined from the measured photocurrent at the selected wavelength from a NIST calibrated photodiode

of 405 nm photons =
$$\frac{0.65 fA}{(1 kHz)(0.19\frac{A}{W})(1.6x10^{-19}J/eV)(3.06 eV)}$$
 (0.86) = $\frac{6.01 \text{ photons}}{(0.19 \text{ photons})}$

PDE in LN₂ (Broadcom, DUNE FBK, DUNE HPK)

PDE (Broadcom, 405 nm, 5V, LN_2) = $\frac{\# photoelectrons out}{\# photons in} = \frac{3.8}{6.01} = 0.63$

PDE @ 405 nm 5V OV in LN2	Poisson fitted n-pe	absolute PDE (±7%)	Spec. RT
DUNE HPK 75 µm	3.15	0.52	~0.47
DUNE FBK 50 µm	2.93	0.48	n/c
Broadcom 40 µm	3.8	0.63	~0.62

DUNE HPK: PDE spectral response – use white light source and calibrate against NIST photodiode

$$PDE_{\lambda} = [spectral \ reponse]_{\lambda} \times \frac{[PDE_{pulse}]_{405nm}}{[spectral \ reponse]_{405nm}}$$

noted: CT & AP – photoelectron effect, wavelength independent

PDE (QE) = photon effect, depends on wavelength

Spectral PDE response generally agrees with HPK (peak at \sim 460 nm) – also has a slight blue shift behavior in LN₂

DUNE FBK: PDE spectral response – use white light source and calibrate against NIST photodiode

$$PDE_{\lambda} = [spectral \ reponse]_{\lambda} \times \frac{[PDE_{pulse}]_{405nm}}{[spectral \ reponse]_{405nm}}$$

noted: CT & AP – photoelectron effect, wavelength independent

PDE (QE) = photon effect, depends on wavelength

N/C

Can't compare to FBK data (peak at ~400 nm) – may have a very slight blue shift behavior in LN_2

Broadcom: PDE spectral response – use white light source and calibrate against NIST photodiode

$$PDE_{\lambda} = [spectral \ reponse]_{\lambda} \times \frac{[PDE_{pulse}]_{405nm}}{[spectral \ reponse]_{405nm}}$$

noted: CT & AP – photoelectron effect, wavelength independent

PDE (QE) = photon effect, depends on wavelength

SiPM array readout concept

DUNE FD-2: ARAPUCA (Argon R&D Advanced Program at UniCAmp).

- **Optical area**
 - 600 mm x 600 mm=3600 cm^2
- SiPM area
 - 160 x 0.36 cm² ≈60 cm^2
 - ≈1.7 % of opt. area
 - SiPM array capacitance ≈200 nF for V_{bd}~45 V; ≈260 nF for

M.C. Queiroga Bazetto, V.L. Pimentel, A.A. Machado and E. Segreto, in Campinas, Brazil

nEXO SiPM Light Detector Readout

SNR>10 for single photo electrons & radio-pure components are essential for nEXO.

2021 IEEE NSS/MIC

Demonstration of readout concept: weak coupling to amplifier, $C_b << C_d$

LArASIC P2:

16 independent ASIC input channels peaking time: 1 μ s (programmable 0.5, 1, 2, 3 μ s) ASIC gain: 4.7 mV/fC (programmable 7.8, 14, 25 mV/fC) C_{cal} =185 fF ADC sampling rate: 2 MS/s (0.5 μ s/time tick) 10 MHz ref. clock lock Reference: channel 0 Minitile 8P2S: channel 1 Minitile 8P2S: channel 13 *only 2 ASIC channels are used.*

LArASIC readout by ADC and FPGA shown in the photo Data streaming mode, 45sec/data Data collection: LabView Data analysis: Python 2021 IEEE NSS/MIC

time (ns)

To know the number of detected photons, the charge of the signal must be measured. two most common approaches:

• Charge integration

• Amplitude measurement

Both methods have their advantages and disadvantages. or a combination of both

Charge Readout concept: weak coupling to amplifier

2021 IEEE/MIC

SiPM parameters

SiPM parameters

HPK SiPM Minitile arrays S13775-9121 [4x4x(0.6 cm)²]

HPK minitile board SG/WjA 06/29/2020 D8 D16 D12 D4 4 cm D11 **D7** D15 D3 D14 D10 D2 D6 D13 D9 D1 **D5** n

6.8 cm

active area= 5.76 cm^2 N_{cell}=16x13923=222768 pixels $C_{\mu cell}(RT) = 86 \text{ fF}$ $C_{\text{Terminal}}^{(\text{RT})=1.2 \text{ nF} (3.3 \text{ nF/cm}^2)$ $C_{total}(16P)$ SiPM tile ~ 20 nF $C_{total}(8P2S)$ SiPM tile = 4.8 nF

in LN₂ (a) 4.2 V OV 8P2S 4.8 nF: subset of raw signal trace (1 second)

2021 IEEE NSS/MIC

in LN₂: single-photoelectron charge histogram

Avalanche gain, S/N, resolution (8P2S, 4.8 nF), in LN₂

Single-Photoelectron Timing and Coincidence Resolution

1-pe time jitter histogram, 45 sec data

sinc-interpolation + peak finding led to ~ 10 ns timing resolution

time coincidence detection: minitiles #27 & #28 – 10 MHz lock ON

24

time coincidence detection: minitiles #27 & #28 – 10 MHz lock ON

after-pulse longer than μ s: release of trapped charges after a characteristic time that depends on the type of the trapping centers and its occurrence probability increase in cryogenic temperature.

Mass testing of SiPMs

NIM A610 (2009)

Mass production test of Hamamatsu MPPC for T2K neutrino oscillation experiment

M. Yokoyama ^{a,*}, T. Nakaya ^a, S. Gomi ^a, A. Minamino ^a, N. Nagai ^a, K. Nitta ^a, D. Orme ^a, M. Otani ^a T. Murakami ^b, T. Nakadaira ^b, M. Tanaka ^b

^a Department of Physics, Kyoto University, Kyoto 606-8502, Japan
^b IPNS, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

NIM A985 (2021)

Cryogenic SiPM arrays for the DUNE photon detection system

A. Falcone ^{a,*}, A. Andreani ^c, S. Bertolucci ^b, C. Brizzolari ^a, N. Buckanam ^d, M. Capasso ^f, C. Cattadori ^a, P. Carniti ^a, M. Citterio ^c, K. Francis ^e, N. Gallice ^c, A. Gola ^f, C. Gotti ^a, I. Lax ^b, P. Litrico ^g, A. Mazzi ^f, M. Mellinato ^a, A. Montanari ^b, L. Patrizii ^b, L. Pasqualini ^b, G. Pessina ^a, M. Pozzato ^b, S. Riboldi ^c, P. Sala ^c, G. Sirri ^b, M. Tenti ^{a,b}, F. Terranova ^a, M. Torti ^a, R. Travaglini ^b, D. Warner ^d, R. Wilson ^d, V. Zutshi ^e

^a INFN Milano Bicocca and University of Milano Bicocca, Department of Physics, Milano, Italy ^b INFN Bologna and University of Bologna, Dapartment of Physics, Bologna, Italy ^c INFN Milano and University of Milano, Department of Physics, Milano, Italy ^d Colorado State University, Fort Collins, CO, USA ^e Northern Illinois University, Dapartment of Physics, DeKalb, IL, USA ^f Fondacine Bruno Kessler, Trento, Italy ^e SINFN, Laboratori Nazionali del Sud (INS), Catania, Italy

BNL?

For quality assurance of the <u>T2K neutrino detectors</u> ~60,000 SiPMs (HPK) were tested:

gain (G), breakdown voltage (V_{bd}), noise rate (DCR), photo detection efficiency (PDE), and cross-talk (CT) and afterpulse(AP) rate are measured as functions of the bias voltage (V_b) and temp. (T)

For quality assurance of the <u>DUNE photon detection system</u> 100-1000 SiPMs (FBK & HPK) were tested:

cryo-reliability: electric and mechanical stability vs. thermal cycle, I–V curve, Dark Count Rate (DCR) and correlated noise CN(OV). Single photoelectron sensitivity as a function of the total number of sensors connected.

For quality assurance of the FD3-4 photon detection system test of x # SiPMs (FBK & HPK) are being discussed: I-V, G, V_{bd} , DCR, CN: CT, AP (OV), relative PDE ...

