
Event Display Options

THE MicroBooNE Event Display

Tutorial at: h9ps://cdcvs.fnal.gov/redmine/projects/uboone-physics-
analysis/wiki/Gallery_Event_Display_-_How_To

When first seIng up:

1. (go into SL7 container)

source /nashome/i/imawby/interac2veContainer_uboone.sh

2. Clone EVD dir

git clone h9ps://github.com/davidc1/gallery-framework UBEVD

3. replace config/setup.sh with

/exp/uboone/app/users/imawby/UBEVD/config/setup.sh
source config/setup.sh

4. Build (you only have to do this once)

cd $GALLERY_FMWK_BASEDIR
make

To run:

1. Change the resoluEon of your vnc so the EVD window fits, type this into the uboonegpvm

xrandr -s 1600x1200

2. (go into SL7 container)

source /nashome/i/imawby/interac2veContainer_uboone.sh

3. source the setup script

source config/setup.sh

4. Run event display on reco2 files!

evd.py -T <path_to_file>

Event Display Options

Isobel’s Hacked Together MicroBooNE Event Display

This takes the form of a Jupyter notebook which runs on files created by my ‘VisualisaEon
analyser’. The intended workflow for this is:

reco2 files of interest -> run analyser -> move output files to computer with jupyter -> run
notebook

DISCLAIMER: I pulled this together in the last few days, and am pre9y pants
at python so apologies if my notebook makes you sad. If something doesn’t
work let me know, it should be easy to fix. I’d appreciate any feedback too!

The Analyser

You can either access the analyser via 1) setting up my local larsoft build on the
uboonegpvms or 2) moving my analyser into your local larsoft build

Option 1:

1. source my local larsoft build setup script

source /exp/uboone/app/users/imawby/larsoft_olderVersion/setup.sh

2. run analyser on events

lar -c run_VisualiseSlice.fcl <PATH_TO_YOUR_EVENTS>

You should then end up with a file called reco_stage_2_hist.root (sorry I didn’t change
the default name…) that’s the one with the tree in!

Option 2:

1. Git clone my github repository somewhere in your uboonegpvm area. This repo
contains a directory for the analyser and the jupyter notebook (we’ll come to the latter
soon). Move the analyser directory into your local build of ubana and build.

git clone https://github.com/imawby/WarwickuBooNEWorkshop24
mv EVDDir srcs/ubana/ubana/
open the CMakeLists.txt that lives inside srcs/ubana/ubana/ and add EVDDir to the list
of directories
move to a build machine, cross those fingers and build

ASIDE: If you don’t have ubana in your local larsoft build:

cd scrs

Event Display Options

mrb g ubana
ups active (then find the version of ubana that is currently set up)
git checkout tags/PUT_VERSION_HERE -b AWESOME_BRANCH_NAME
move to a build machine, cross those fingers and build

2. run analyser on events

lar -c run_VisualiseSlice.fcl <PATH_TO_YOUR_EVENTS>

You should then end up with a file called reco_stage_2_hist.root (sorry I didn’t change
the default name…) that’s the one with the tree in!

The Isobel’s Hacked Together MicroBooNE Event Display

IMPORTANT: This needs to happen on a computer in which you can open a
jupyter notebook. Can this happen on the uboonegpvms? I don’t know. If you
do know, put me out of my misery. I usually move over the ana files to my
laptop and run things from there. Do this with a classic scp e.g.

scp
imawby@uboonegpvm02.fnal.gov:/exp/uboone/app/users/imawby/larso;_
olderVersion/junk/reco_stage_2_hist.root ./

1. ON AN APPROPRIATE MACHINE, git clone my github repository. This repo contains a
directory for the analyser and the jupyter notebook (we only care about the latter in this
section).

git clone https://github.com/imawby/WarwickuBooNEWorkshop24

2. Go into this directory and type

jupyter notebook

3. Click on the ‘Visualise.ipyn’
and you should see this beauty

Event Display Options

4. Put the name of your file here

5. Put the index of the event you want to see here

6. You’re ready to go… Hit the fast forward arrow to reset and run the whole notebook
again

7. Let me just give you a quick description of the things you’ll see.. so first you’ll want to
check the run/subrun/event are those of the event that you actually care about... You’ll
be told that in this section. Here you’re also told some reco properties, how many reco
particles are in the reco’d nu slice, and the completeness/purity of that slice

Event Display Options

8. You’ll then see all the true hits of the neutrino interaction. If the reco was perfect, this
is the output to expect. So you should use this display as a benchmark of the reco. The
hits are coloured by the PDG of the particle that owns them:

red – electron, orange – photon, green – proton, blue – muon, pink – pion, kaon - brown

Any particle not in this list will be drawn as grey. If you need to add a particle, find this
line in the code and drop your particle in with some colour (not grey)

pdgColours_graph = {13 : 'blue', 11 : 'red', 2212 : 'green', 211 : 'pink', 22 : 'tab:orange', 321 :
‘tab:brown’}

The black star shows the true neutrino vertex. To get true positions to match to reco hits
you need to apply all sorts of corrections (SCE, trigger oasets, wirecell-pandora
diaerences). In this display I’ve only applied SCE (I couldn’t get the trigger oaset to
work). So you might have to mentally shift the start in the x direction.

The x-axis is the drift coord, and the y the ‘wire-coord’. This is the way it should be ;) In
the unzoomed case, the hits will align in the x-direction (because the drift coord is
common between views). This helps identify particles/features across the views.

Event Display Options

You will find this panel on the LHS of the image. You can move the image
around using option 4 and zoom in using option 5. You can save things by
hitting option 6.

9. The next display is of the hits that are in the identified neutrino slice. This event
display will help you identify 1) whether we have identified the correct slice 2) if you’ve
lost any of your signal hits 3) if we’ve brought in a sneaky cosmic.

Again, hits are coloured by their PDG code and uses the same dictionary as above.
Cosmics have no truth info, these will be drawn in grey.

In this example you can see that a cosmic ray has snuck into our neutrino slice. Sneaky
sneaky.

Event Display Options

10. Okay, the next panel shows you the pandora reconstructed output. Here the
particles can be coloured by 1) by PFP i.e. each PFP has its own colour (this is a random
choice, so some annoying colours might appear) 2) their truth matched PDG (if particles
are merged together) this might look a bit complicated 3) whether they are track or
shower-like 4) their generation i.e. whether they are a child of the neutrino, grandchild
etc..

I think the default is by PFP, if you want to change it, find these lines in the code and
change the ‘colourMode’. You’ll have to hit the notebook’s forward button again to see
the change

Event Display Options

In this example, I’ve coloured by PFP. You can see that the electron has been split into
into its track-like stub and shower region. Although not in this screenshot (sorry I’m
writing this on the train) you’ll see stars which show the reco vertices. The reco vertices
are 3D objects, and have been projected into each view for visualisation. PFP vertices
will be coloured by the colour of their hits. The neutrino vertex will always be black.

So, if I zoomed into the U view, I would see something like this:

 11. Okay so the last panel shows the 3D reco output. Again particles are coloured
depending on the ‘colourMode’. The graph is interactive so you can click and drag and
hopefully things should rotate! Again, the stars demonstrate vertices, as coloured by the
associated PFP. The neutrino vertex is always black.

